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Abstract

Life table data ofRhodnius prolixus(Heteroptera: Reduviidae) kept at laboratory conditions were analysed in search for
mortality patterns. Gompertz and Weibull mortality models seem adequate to explain the sigmoid shape of the survivorship
curve. A significant fit was obtained with both models for females (R2 = 0.70,P < 0.0005 for the Gompertz model;R2 = 0.78,
P < 0.0005 for the Weibull model) and for males (R2 = 0.39,P < 0.0005 for the Gompertz model;R2 = 0.48,P < 0.0005 for
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he Weibull model). The mortality parameter (b) is higher for females in Gompertz and Weibull models, using smoo
on-smoothed data (P < 0.05), revealing a significant sex mortality differential. Given the particular life history of this in

he non-linear relationship between the force of mortality and age may have an important impact in the vectorial ca
. prolixusas Chagas disease vector, and its consideration should be included as an important factor in the trans
rypanosoma cruziby triatomines.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Rhodnius prolixusSt̊al is the main natural vector of
rypanosoma cruzi(Chagas) in northern South Amer-
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ica and part of Central America. This parasite ca
Chagas disease and such situation points out to th
evance of further studies on the life history traits
these insects.

Life table studies in Triatominae have been wid
developed, usually under laboratory conditions, to
termine population parameters of different spe
(Rabinovich, 1972; Zeled́on, 1981; Feliciangeli an
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Rabinovich, 1985; Cabello et al., 1987; Cabello and
Galindez, 1998), or the effects of density-dependence
on the growth parameters (Rodŕıguez and Rabinovich,
1980). Such studies made no emphasis on mortality or
longevity, which justifies the present study as those life
history traits contribute to the vectorial capacity of an
insect that spreads a disease, as the vectorial capac-
ity depends on the mortality rate of an insect species
(Garrett-Jones, 1964).

Of the variety of mortality models found in the lit-
erature, the Gompertz model is the most widely used
(Preston et al., 2000). It states that above a threshold
age, sexual maturity or any other important life history
event, there is an exponential increase of mortality (µx)
with age (x), expressed by the equation:

µx = aeb(x) (1)

wherea is the initial mortality rate andb is the “Gom-
pertz parameter”, which represents the slope of the
mortality function (Carey, 2001). Another model uti-
lizes the Weibull distribution (Pinder et al., 1978;
Gurney and Nisbet, 1998), and is called the Weibull
model (Carey, 2001). In this model, mortality is a power
function of age:

µx = axb. (2)

A plot of log(µx) against log(x) should give a
straight line with slopeb. In the Weibull model,a is the
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2. Materials and methods

Mortality parameters ofR. prolixus, from egg hatch-
ing to adult, were estimated from partially published
life table data inRodŕıguez and Rabinovich (1980). Co-
horts of an initial density of 128 individuals per 3.8 l
jars were reared in the laboratory, at 27◦C and 80%
RH. Bugs were fed “ad libitum” once a week on hen.
Three replicates were used. Other details can be found
in Rodŕıguez and Rabinovich (1980).

Mortality values were obtained in two ways (both
justified byCarey, 2001). The first is the classical neg-
ative logarithmical relationship:

µx1 = − ln(Px) (3)

and the second results from a smoothing method to
reduce noise:

µx2 = −1
2[ln(Px−1) + ln(Px)] (4)

wherePx is the survival probability from agex to x +
1. The mortality rate (µx) was transformed by taking
natural logarithms, and a linear fit with age was carried
out for the Gompertz model (1), and with the natural
logarithm of age for the Weibull model (2), both by the
least squares method (Zar, 1998). Figures and statis-
tical analysis were done using the R language (Ihaka
and Gentleman, 1996). Data points for regression anal-
yses were taken for ages after initial random mortality
happened. Sexual maturity is a threshold age, at least
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cale andb the shape parameter (Pinder et al., 1978
arey, 2001).
There are some evidences that sex mortality di

nces occur among species and some apparent
oxes have been reported; e.g., inCeratitis capitata
Wiedemann) mortality is lower in males than in
ales, but females are usually the last to die (Carey
t al., 1995). There is no common pattern of sex m

ality differential among species, but differences, w
hey are present, can have underlying reasons (Carey
nd Judge, 2001).

In this study, we fitted the Gompertz and Weib
odels to the experimental data ofR. prolixusob-

ained byRodŕıguez and Rabinovich (1980). We com-
ared for adult females and males the slope of
ompertz model and the shape parameter of
eibull model, to determine if there is a sex morta

ifferential.
-

or gompertzian mortality; any previous mortality c
e considered random (Carey, 2001). Thus, after a vi
ual inspection, we eliminated isolated data points
ccount for random deaths before the age of sexua

urity, this is, the eighth week in cohorts ofR. prolixus
Rodŕıguez and Rabinovich, 1980). To test sex morta
ty differentials, a Student’st-test for slope difference
b (Zar, 1998) was carried out.

. Results

Fig. 1 shows the age specific survival curves
oth sexes. After an initial age independent ran
ortality that spans 7 weeks, the curves sho

igmoid decline of survival with age.Fig. 2 shows
hat semi- and double-logarithmic representation
ortality against age for females, are good candid
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Fig. 1. Age specific survivorship schedules for females and males ofRhodnius prolixus.

for linear regression analyses. InFig. 3, we can see
that only smoothed double-logarithmic representation
shows an almost linear behaviour.Tables 1 and 2show
the parameter estimates for Gompertz and Weibull
models (with non-smoothed and smoothed data) for fe-
males and males, respectively. ForR. prolixusfemales,
the Weibull model fitted with smoothed data gives the
highest proportion of explained variation (R2 = 0.78,P
< 0.0005). For males, the regressions could not explain
more than 48% (P < 0.0005) of the mortality variation
for both models. Independently of the model used and
the data being smoothed or not, the mortality parameter
is higher in females than in males (P< 0.05) (Table 3).

Table 1
Parameter estimates, and their standard errors, of the Gompertz and
Weibull mortality models for data ofRhodnius prolixusfemales

Model µx1 (non-smoothed) µx2 (smoothed)

Gompertz b = 0.10± 0.01 b = 0.11± 0.01
ln(a) = −6.07± 0.37 ln(a) = −6.42± 0.36
R2 = 0.66 R2 = 0.70
F(1,38) = 73.75 F(1,41) = 93.59
P-value = 1.96× 10−10 P-value = 3.85× 10−12

Weibull b = 2.63± 0.47 b = 2.89± 0.24
ln(a) = −11.76± 0.90 ln(a) = −12.70± 0.78
R2 = 0.71 R2 = 0.78
F(1,38) = 94.73 F(1,41) = 150.00
P-value = 7.21× 10−12 P-value = 2.77× 10−15

Table 2
Parameter estimates, and their standard errors, of the Gompertz and
Weibull mortality models for data ofRhodnius prolixusmales

Model µx1 (non-smoothed) µx2 (smoothed)

Gompertz b = 0.05± 0.01 b = 0.06± 0.01
ln(a) = −5.33± 0.46 ln(a) = −5.37± 0.35
R2 = 0.25 R2 = 0.39
F(1,41) = 13.50 F(1,42) = 26.42
P-value = 7.00× 10−4 P-value = 6.00× 10−6

Weibull b = 1.44± 0.35 b = 1.60± 0.26
ln(a) = −8.48± 1.16 ln(a) = −8.96± 0.85
R2 = 0.29 R2 = 0.48
F(1,41) = 16.77 F(1,42) = 39.24
P-value = 2.00× 10−4 P-value = 1.66× 10−7

Table 3
Differences between the slope parameters for Gompertz and Weibull
models

Model 	b (non-smoothed data) 	b (smoothed data)

Gompertz 	b = 0.05± 0.01 	b = 0.05± 0.01
t79 = 7.16,P < 0.05 t83 = 8.74,P < 0.05

Weibull 	b = 1.19± 0.01 	b =1.39± 0.01
t79 = 187.71,P < 0.05 t83 = 247.12,P < 0.05

	b = bfemales− bmales.

4. Discussion

Gompertz and Weibull models seem adequate for
the mortality schedules observed in females and males
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Fig. 2. Plots of mortality rate, in deaths/week, vs. age, in weeks, forRhodnius prolixusfemales; (a) and (b) use a logarithmic scale for mortality
rate as required by the Gompertz model, but (c) and (d) use a double logarithmic scale as required by the Weibull model. Plots (a) and (c) use
non-smoothed data, and (b) and (d) use smoothed data. Data used begins at week 7 of the original data, after independent random mortality has
acted. Parameters for the regression line are given inTable 1.

of R. prolixus. In general, they are better than the as-
sumption of a constant mortality rate that leads to an
exponential decrease inlx instead of a sigmoid one.
Although the Weibull model gives the best fit for all
data treatments, the Gompertz model has a biologi-
cal mechanistic background (Carey, 2003; Carey and
Judge, 2001), so we think that the fit to the latter could
be improved with larger samples, like those ofCarey
et al. (1992), greater than thousand individuals.

The vectorial capacity of an insect is strongly af-
fected by its longevity.Carey (2001)noted that the
longer a vector lives, the greater the expectation that it
will become infected, and a higher prevalence of infec-
tion in the insect vectors implies a higher probability
of transmitting a disease. The probability ofT. cruzi
transmission to the host by fecal contamination during

feeding by a positiveTriatoma infestanswas estimated
to be of the order of 0.0005 for humans (Rabinovich
et al., 1990) and of the order of 0.06 for opossums
(Rabinovich et al., 2001). As the average triatomine
longevity, as determined by the mortality rate, plays
an essential role in the transmission of Chagas disease,
mortality and longevity aspects should be present in
transmission studies ofT. cruziby triatomines.

Longevity also has to be considered when dealing
with the study of bugs as reservoirs ofT. cruzi infec-
tion to other bugs (i.e., horizontal transmission). In
triatomines, there are evidences of horizontal trans-
mission of parasites, from older to younger bugs
(Ryckman, 1951; Marinkelle, 1965) and of a long
lasting vectorial competence in fasting bugs (Takano-
Lee and Edman, 2002). As adults ofR. prolixusare
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Fig. 3. Plots of mortality rate, in deaths/week, vs. age, in weeks, forRhodnius prolixusmales; (a) and (b) use a logarithmic scale for mortality
rate as required by the Gompertz model, but (c) and (d) use a double logarithmic scale as required by the Weibull model. Plots (a) and (c) use
non-smoothed data, and (b) and (d) use smoothed data. Data used begins at week 7 of the original data, after independent random mortality has
acted. Parameters for the regression line are given inTable 2.

not the most abundant stage in domestic populations
(Rabinovich et al., 1979) nor in palm trees (Feliciangeli
and Torrealba, 1977), and as fourth and fifth stage
nymphs, the most abundant stages ofR. prolixus,
have greater defecation indices than older individuals
(Zeled́on, 1981; Takano-Lee and Edman, 2002) appar-
ently adults would not be the main transmitting tri-
atomine stage. However, a detailed knowledge of the
relationship between mortality rates and life span ex-
tension might assess the potential ofT. cruzi infec-
tion persistence in populations of bugs isolated from
infected vertebrates, where parasitic transmission via
hygrokleptism (feeding of hungry individuals upon en-
gorged ones;Añez, 1982; Feliciangeli de Piñero et al.,
1988), might be a common phenomenon.

The mortality rate of an insect vector also has epi-
demiological importance through the demography of

the insect populations. In the particular case of tri-
atomines, the transmission model of Chagas disease
by Velasco-Herńandez (1994)shows that the mortality
rate of the bugs not only affects the vector population
size but also impinges on the value of population den-
sity at equilibrium, as well as onR0, the basic reproduc-
tion ratio of the infection. In this ratio, the mortality rate
of the bugs appears in the denominator and, being an
instantaneous rate with values usually less than 1 (i.e.,
below its maximum theoretical value), its effect on the
basic reproductive ratio of the infection is an impor-
tant one.Velasco-Herńandez (1994)also calculates a
relative index that compares the effectiveness of vector
species to transmit parasites using the ratio of the vec-
tor numbers to host numbers, before it spreads in the
host population and after the steady state is reached.
The formula of this index is directly affected by the
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vector’s mortality rate, which again appears in the de-
nominator, and has been proposed to be used in the eval-
uation of the effectiveness of control strategies (Dye,
1990).

Sex differences of mortality slopes for each model
and data treatment may explain the behaviour that
we see inFig. 1: males live longer than females,
because the former have a lower mortality rate. A
similar sex differential was found in the milkweed bug
Oncopeltus fasciatus(Dallas) and the cotton stainer
Dysdercus fasciatusSign (Dingle, 1966). However,
other studies indicate that mortality trajectories are
facultative (e.g.,Carey, 2003), because mortality is
a life history trait that is affected by environmental
conditions (Carey and Judge, 2001), in our case the
rearing methods and experimental conditions of the
insect laboratory colonies (Rodŕıguez and Rabinovich,
1980).

The mortality rates and sex differentials here eval-
uated provide a basic estimate under controlled labo-
ratory conditions, and cannot be extrapolated to field
and/or domestic conditions. Most surely the field and
possibly also the domestic populations will evidence
higher mortality rates than the ones fitted here to the
Weibull and Gompertz models. An analysis similar to
the one here conducted should also be carried out with
sylvatic and domestic populations, particularly withR.
prolixus and Triatoma dimidiatathat show interact-
ing sylvatic and domestic cycles, with populations that
interchange between sylvatic and domestic biotopes
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