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Abstract

Life table data ofRhodnius prolixugHeteroptera: Reduviidae) kept at laboratory conditions were analysed in search for
mortality patterns. Gompertz and Weibull mortality models seem adequate to explain the sigmoid shape of the survivorship
curve. A significant fit was obtained with both models for femaR’s< 0.70,P < 0.0005 for the Gompertz modé® = 0.78,

P < 0.0005 for the Weibull model) and for maleR?(= 0.39,P < 0.0005 for the Gompertz mode® = 0.48,P < 0.0005 for

the Weibull model). The mortality parameter (b) is higher for females in Gompertz and Weibull models, using smoothed and
non-smoothed dat#(< 0.05), revealing a significant sex mortality differential. Given the particular life history of this insect,

the non-linear relationship between the force of mortality and age may have an important impact in the vectorial capacity of
R. prolixusas Chagas disease vector, and its consideration should be included as an important factor in the transmission of
Trypanosoma cruziy triatomines.

© 2004 Elsevier B.V. All rights reserved.
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1. Introduction ica and part of Central America. This parasite causes
. . L . Chagas disease and such situation points out to the rel-
Rhodnius prolixustal is the main natural vector of  evance of further studies on the life history traits of
Trypanosoma cruZiChagas) in northern South Amer-  these insects.
Life table studies in Triatominae have been widely
"+ Corresponding author. Tel.: +58 212 6051310; deve_loped, usua_lly under laboratory cc_)ndmons, to (_je-
fax: +58 212 6051300. termine population parameters of different species
E-mail addressluchav@ula.ve (L.F. Chaves). (Rabinovich, 1972; Zeldwh, 1981; Feliciangeli and
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Rabinovich, 1985; Cabello et al., 1987; Cabello and 2. Materials and methods

Galindez, 1998 or the effects of density-dependence

on the growth parameterR¢dfiguez and Rabinovich, Mortality parameters dR. prolixus from egg hatch-

1980. Such studies made no emphasis on mortality or ing to adult, were estimated from partially published

longevity, which justifies the present study as those life life table datairRodiiguez and Rabinovich (198} o-

history traits contribute to the vectorial capacity of an horts of an initial density of 128 individuals per 3.81

insect that spreads a disease, as the vectorial capaciars were reared in the laboratory, at°Z7 and 80%

ity depends on the mortality rate of an insect species RH. Bugs were fed “ad libitum” once a week on hen.

(Garrett-Jones, 1964 Three replicates were used. Other details can be found
Of the variety of mortality models found in the lit-  in Rodiiguez and Rabinovich (1980)

erature, the Gompertz model is the most widely used  Mortality values were obtained in two ways (both

(Preston et al., 20Q0It states that above a threshold justified byCarey, 200} The first is the classical neg-

age, sexual maturity or any other important life history ative logarithmical relationship:

event, there is an exponential increase of mortaity) (

with age &), expressed by the equation: tx1 = —In(Px) 3)
) 1 and the second results from a smoothing method to

Mo = ae (1) reduce noise:

wherea s the initial mgrtality rate and is the “Gom- fx2 = —3[IN(Py—1) + In(Py)] 4

pertz parameter”, which represents the slope of the

mortality function Carey, 2001 Another model uti- whereP, is the survival probability from ageto x +

lizes the Weibull distribution Rinder et al., 1978; 1. The mortality rate,) was transformed by taking
Gurney and Nisbet, 1998and is called the Weibull ~ natural logarithms, and a linear fit with age was carried
model Carey, 2001 In this model, mortalityisapower  out for the Gompertz model (1), and with the natural

function of age: logarithm of age for the Weibull model (2), both by the
least squares methoddr, 1998. Figures and statis-
pr = ax’. 2 tical analysis were done using the R languaijaka

and Gentleman, 1998Data points for regression anal-

A plot of log(u,) against logf) should give a yses were taken for ages after initial random mortality
straight line with slop®. In the Weibull modelais the happened. Sexual maturity is a threshold age, at least
scale and the shape parametePider et al., 1978;  for gompertzian mortality; any previous mortality can
Carey, 200} be considered randontCérey, 2001 Thus, after a vi-

There are some evidences that sex mortality differ- sual inspection, we eliminated isolated data points that
ences occur among species and some apparent paraaccount for random deaths before the age of sexual ma-
doxes have been reported; e.g.,Geratitis capitata turity, this is, the eighth week in cohorts Bf prolixus
(Wiedemann) mortality is lower in males than in fe- (Rodiguez and Rabinovich, 198070 test sex mortal-
males, but females are usually the last to diargy ity differentials, a Studentstest for slope differences,
et al., 1995%. There is no common pattern of sex mor- Ab (Zar, 1998 was carried out.
tality differential among species, but differences, when
they are present, can have underlying reas@esdy

and Judge, 2001 3. Results

In this study, we fitted the Gompertz and Weibull
models to the experimental data Bf prolixusob- Fig. 1 shows the age specific survival curves for
tained byRodfiguez and Rabinovich (1980)Ve com- both sexes. After an initial age independent random

pared for adult females and males the slope of the mortality that spans 7 weeks, the curves show a
Gompertz model and the shape parameter of the sigmoid decline of survival with agerig. 2 shows

Weibull model, to determine if there is a sex mortality that semi- and double-logarithmic representations of
differential. mortality against age for females, are good candidates
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Fig. 1. Age specific survivorship schedules for females and malB&odinius prolixus

for linear regression analyses. Hig. 3 we can see  Table2
that only smoothed double-logarithmic representation Parameter estimates, and their standard errors, of the Gompertz and
shows an almost linear behavioliables 1 and 2how Weibull mortality models for data dkhodnius prolixusnales

the parameter estimates for Gompertz and Weibull Model

y1 (non-smoothed) 1y2 (smoothed)

models (with non-smoothed and smoothed data) for fe- Gompertz ~ b=0.05+0.01 b=0.06+0.01
males and males, respectively. Foprolixusfemales, 'I‘Rz(f) : 2—55-33i 0.46 ,2@ : ;95-37i 035
the Weibull model fitted with smoothed data gives the Fuap = 13.50 Fruaz) = 26.42

highest proportion of explained variatioR= 0.78,P
< 0.0005). For males, the regressions could not explain

P-value = 7.00x 104 P-value = 6.00x 10~°

more than 48%R < 0.0005) of the mortality variation Weibull ﬁ](_a)l fii&g';i 116 tl)n_(a)l fgi&gfi 0.85

for both models. Independently of the model used and R2=0.29 R2=0.48

the data being smoothed or not, the mortality parameter F41=16.77 Fa42 =39.24

is higher in females than in maleB € 0.05) (Table 3. P-value =2.00x 10°*  P-value = 1.66x 10’
Table 3

Table 1 Differences between the slope parameters for Gompertz and Weibull

Parameter estimates, and their standard errors, of the Gompertz andmOdeIS

Weibull mortality models for data dRhodnius prolixusemales Model Ab (non-smoothed data) Ab (smoothed data)
Model 1x1 (non-smoothed) 1Lx2 (sSmoothed) Gompertz ~ Ab=0.05+ 0.01 Ab=0.05+ 0.01
Gompertz  b=0.10+0.01 b=0.11+0.01 t79=7.16,P<0.05 tg3=8.74,P < 0.05
In(a) = —6.07+ 0.37 In@) = —6.42+ 0.36 Weibull Ab=1.1940.01 Ab=1.39+0.01
R?=0.66 R?=0.70 t70=187.71P < 0.05 tg3 = 247.12,P < 0.05
F(1,38)=73.75 F(1,41)=93.59
P-value =1.96x 10710 P-value = 3.85x 1012 Ab = bremales— Bmales
Weibull b=2.63+0.47 b=2.89+ 0.24 . )
In(a) = —11.76- 0.90 In@) = —12.70+ 0.78 4. Discussion
RZ=0.71 R2=0.78
F(1,38)=94.73 F(1,41) = 150.00

P-value = 7.21x 10712

P-value = 2.77x 10715

Gompertz and Weibull models seem adequate for
the mortality schedules observed in females and males
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Fig. 2. Plots of mortality rate, in deaths/week, vs. age, in week&fimdnius prolixusemales; (a) and (b) use a logarithmic scale for mortality

rate as required by the Gompertz model, but (c) and (d) use a double logarithmic scale as required by the Weibull model. Plots (a) and (c) use
non-smoothed data, and (b) and (d) use smoothed data. Data used begins at week 7 of the original data, after independent random mortality he
acted. Parameters for the regression line are givaalite 1

of R. prolixus In general, they are better than the as- feeding by a positiv@riatoma infestansvas estimated
sumption of a constant mortality rate that leads to an to be of the order of 0.0005 for humarRgbinovich
exponential decrease IR instead of a sigmoid one. et al., 19909 and of the order of 0.06 for opossums
Although the Weibull model gives the best fit for all (Rabinovich et al., 2001 As the average triatomine
data treatments, the Gompertz model has a biologi- longevity, as determined by the mortality rate, plays
cal mechanistic backgroun€érey, 2003; Carey and an essential role in the transmission of Chagas disease,
Judge, 200}, so we think that the fit to the latter could mortality and longevity aspects should be present in
be improved with larger samples, like thoseGdrey transmission studies df cruziby triatomines.
et al. (1992) greater than thousand individuals. Longevity also has to be considered when dealing
The vectorial capacity of an insect is strongly af- with the study of bugs as reservoirs Bfcruzi infec-
fected by its longevityCarey (2001)noted that the  tion to other bugs (i.e., horizontal transmission). In
longer a vector lives, the greater the expectation that it triatomines, there are evidences of horizontal trans-
will become infected, and a higher prevalence of infec- mission of parasites, from older to younger bugs
tion in the insect vectors implies a higher probability (Ryckman, 1951; Marinkelle, 19%5%and of a long
of transmitting a disease. The probability &f cruzi lasting vectorial competence in fasting budgaKano-
transmission to the host by fecal contamination during Lee and Edman, 2002As adults ofR. prolixusare
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Fig. 3. Plots of mortality rate, in deaths/week, vs. age, in week®kfimdnius prolixusnales; (a) and (b) use a logarithmic scale for mortality

rate as required by the Gompertz model, but (c) and (d) use a double logarithmic scale as required by the Weibull model. Plots (a) and (c) use
non-smoothed data, and (b) and (d) use smoothed data. Data used begins at week 7 of the original data, after independent random mortality has
acted. Parameters for the regression line are givdalite 2

not the most abundant stage in domestic populations the insect populations. In the particular case of tri-

(Rabinovich etal., 197%0r in palm treesKeliciangeli atomines, the transmission model of Chagas disease
and Torrealba, 19737 and as fourth and fifth stage by Velasco-Herandez (19943hows that the mortality
nymphs, the most abundant stages Raf prolixus, rate of the bugs not only affects the vector population

have greater defecation indices than older individuals size but also impinges on the value of population den-
(Zeledbn, 1981; Takano-Lee and Edman, 2p&g@par- sity at equilibrium, as well as dRy, the basic reproduc-
ently adults would not be the main transmitting tri- tion ratio of the infection. In this ratio, the mortality rate
atomine stage. However, a detailed knowledge of the of the bugs appears in the denominator and, being an
relationship between mortality rates and life span ex- instantaneous rate with values usually less than 1 (i.e.,
tension might assess the potentialTofcruzi infec- below its maximum theoretical value), its effect on the
tion persistence in populations of bugs isolated from basic reproductive ratio of the infection is an impor-
infected vertebrates, where parasitic transmission via tant one.\Velasco-Herandez (1994also calculates a
hygrokleptism (feeding of hungry individuals upon en- relative index that compares the effectiveness of vector
gorged onesiAfez, 1982; Feliciangeli de féro et al., species to transmit parasites using the ratio of the vec-
1988, might be a common phenomenon. tor numbers to host numbers, before it spreads in the
The mortality rate of an insect vector also has epi- host population and after the steady state is reached.
demiological importance through the demography of The formula of this index is directly affected by the
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vector’s mortality rate, which again appears in the de-
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References

nominator, and has been proposedto be used in the eval-

uation of the effectiveness of control strategiBy€,
1990.
Sex differences of mortality slopes for each model

and data treatment may explain the behaviour that

we see inFig. 1 males live longer than females,
because the former have a lower mortality rate. A
similar sex differential was found in the milkweed bug
Oncopeltus fasciatugDallas) and the cotton stainer
Dysdercus fasciatu$ign @ingle, 1966§. However,
other studies indicate that mortality trajectories are
facultative (e.g.,Carey, 2003 because mortality is
a life history trait that is affected by environmental
conditions Carey and Judge, 2001in our case the
rearing methods and experimental conditions of the
insect laboratory colonieRpdiiguez and Rabinovich,
1980.

The mortality rates and sex differentials here eval-

uated provide a basic estimate under controlled labo-

ratory conditions, and cannot be extrapolated to field
and/or domestic conditions. Most surely the field and
possibly also the domestic populations will evidence
higher mortality rates than the ones fitted here to the

Weibull and Gompertz models. An analysis similar to Dy
the one here conducted should also be carried out with

sylvatic and domestic populations, particularly wiRh
prolixus and Triatoma dimidiatathat show interact-
ing sylvatic and domestic cycles, with populations that

interchange between sylvatic and domestic biotopes

(Gomez-Ninez, 1969; Zeleoh, 1981; Dumonteil etal.,
2002.

Finally, our results support the claim@érey (2001)
that standard formulae for estimating vectorial capacity

should be modified or redefined to account for the age-

dependent mortality pattern, providing more realism to
these estimates.
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