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In this work, a simple Lotka}Volterra model of intraguild predation with three species is
analysed, searching for the e!ect of the top predator on the coexistence with its prey-
competitor species. Apart from the well-known result that the intraguild prey must be superior
in the competition for the shared prey in order to make coexistence possible, the magnitude of
intraguild predation and the form by which the intraguild predator makes use of the intraguild
prey have important consequences upon the dynamics, extending or restricting the possibilities
of coexistence. These results are easily obtained by nullcline analysis. Also, some interesting
results are obtained for the same model but including saturating functional response.
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Introduction

Increasing attention has been devoted to the eco-
logical relationship of intraguild predation, also
known by some people as a form of omnivory.
The review by Polis et al. (1989) and subsequent
works (e.g. Holt & Polis, 1997) have set a solid
background for additional studies. Polis et al.
(1989) de"ne intraguild predation as the killing
and eating of species that use similar, often limit-
ing, resources and are thus potential competitors.

The most simple model that we can use for the
study of omnivory and/or intraguild predation is
a Lotka}Volterra model of predation for the
trophic relations depicted in Fig. 1. This situation
was analysed by Hallam (1986), and the model
equations are
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The meaning of the variables and parameters are:
N

1
: density of the shared prey or common

resource, N
2
: density of the intraguild prey

(IG prey), N
3
: density of the intraguild predator

(IG predator) or omnivore, r: the resource's in-
trinsic growth rate, K : the resource's carrying
capacity, a

ij
: attack or predation rate of species

j upon species i, c
ij
: e$ciency constant; converts

eaten prey units of j into predator units of i, d
i
:

death rate of i (with iO1).
One of the most important results for this

model is that, for coexistence to be possible, the
intraguild prey (IG prey/species 2) must be
superior to the intraguild predator (IG pred-
ator/species 3) for the shared prey. If neither
species 2 or 3 act as an intraguild predator and
they only compete for one shared prey, coexist-
ence is impossible. The mixed e!ect of competi-
tion and predation set by intraguild predation
creates a niche di!erence between species 2 and 3.

Other properties of the simple Lotka}Volterra
model for intraguild predation/omnivory have
been studied. A recent work by Diehl & Feissel
(2000) has focused on e!ects of enrichment on the
( 2002 Academic Press



FIG. 1. Trophic relations for the model equation (1).

FIG. 2. Nullclines of species 1}3 for the Lotka}Volterra
intraguild predation model equation (1). The nullclines for
species 2 and 3 coincide along the line AB, that passes
through the species 3 nullcline at the point E

123
.
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coexistence of species 2 and 3. As the carrying
capacity (K) becomes larger, there can be a
sequence of equilibria: only species 1 present,
species 1 and 2 present, all the three species
present, and only species 1 and 3 present. This
prediction was tested in the laboratory by the
authors (Diehl & Feissel, 2000), and the experi-
mental results match most of the model predic-
tions.

The condition that the IG prey must be a
superior competitor to the IG predator for co-
existence to be possible generates the following
questions.

1. How large must the level of intraguild pred-
ation be in order to make possible the presence of
species 3?

2. How large must the competitive superiority
of species 2 be in order to make possible its
presence?

An attempt will be made to answer both ques-
tions taking into account the fact that they are
related.

Model Nullclines and Equilibria

The ordinary di!erential equation system (1)
has the following nullclines that are planes in the
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phase space. For the resource we have
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and for the IG predator:
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The nullclines are shown in Fig. 2, supposing
that a positive equilibrium with all three species
present exists. There are "ve possible equilibria,
the "rst of which is trivial:
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with only species 2 absent, the point E
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in the
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Equations (7) and (8) are the equilibria for the
Lotka}Volterra model for one prey and one
predator. These equilibria are positive if
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where i"2, 3. In that case, the equilibrium is
approached monotonically or with damped oscil-
lations.

Finally, there could be a positive equilibrium
with the three species present (see Diehl &
Feissel, 2000), the point E
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The conditions that ensure that eqn (10) de-
"nes a positive equilibrium were already depicted
by Holt & Polis (1997). An illustrative way to
obtain conditions for positive equilibria is by
analysing the geometry of the nullclines [eqns
(2}4)] in the three species space. With a pure
geometrical perspective, the three-species equilib-
rium is the unique coincidence point for the
nullclines because they are planes. For the coor-
dinates of that point to be positive, the following
must be true:

1. that nullclines for IG prey and IG predator
coincide along a straight line that passes through
the points A and B that belongs to the positive
region of the N

1
N

2
and N

1
N

3
planes, respectively,

and
2. that the straight line AB just mentioned
passes through the plane nullcline of the resource
in the positive octant.

Since the IG prey nullcline is parallel to the
N

2
-axis [N

2
does not appear in eqn (3)] with

positive slope in the N
1
N

3
plane, and the IG

predator nullcline is parallel to the N
3
-axis [N

3
does not appear in eqn (4)] with negative slope in
the N

1
N

2
plane, both planes coincide in the posit-

ive octant if and only if
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producing the points A and B just mentioned (see
Fig. 2). This condition allows the "rst of the
above requisites, but at the same time con"rms
that the IG prey is a superior competitor than the
IG predator (because d

i
/c

1i
a
1i

is the minimal den-
sity of species 1 that supports growth for species
i in a predator}prey Lotka}Volterra system),
which is a necessary but not su$cient condition
for coexistence in models of intraguild predation
(Holt & Polis, 1997).

For the second requisite to be ful"lled, points
A and B must lie at opposite sides of the resource
nullcline. For the region enclosed by the resource
nullcline and the N

1
N

2
, N

1
N

3
, N

2
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3
planes, I will

call it &&below'' the resource nullcline and the
other one &&above'' resource nullcline. Common
sense says that there are two ways of placing
points A and B at di!erent sides, and two ways of
placing them at the same side. These four situ-
ations will also determine if IG prey or predator
can or cannot invade.

IG PREY INVASION CONDITION

The IG prey invasion condition is obtained
doing N

2
"0, plotting nullcline equations (2}4)

in the N
1
N

3
plane, and verifying that the equilib-

rium coordinates for the resident species, re-
source and IG predator (point E

13
) lie in the

region for which dN
2
/dt'0.

Since point B belongs to the IG prey nullcline
and E

13
to the resource nullcline, their rela-

tive positions will determine if E
13

is in the
dN

2
/dt'0 region or not, and, at the same time,

if B is below or above the resource nullcline,



FIG. 3. The nullclines of species 1 ( ), 2 ( ) and
3 ( ) in the N

1
N

3
plane of Fig. 2 for a case in which

species 2 can invade when rare. Parameter values r"1,
K"100, a

12
"a

13
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12
"c

13
"0.1, c

23
"0.9, d

2
"0.1,

and d
3
"0.7.

FIG. 4. The nullclines of species 1 ( ), 2 ( ) and
3 ( ) in the N

1
N

2
plane of Fig. 2 for a case in which

species 3 can invade when rare. Parameter values as in
Fig. 3.
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according to the convention stated. Figure 3
shows that the coordinates of E

13
and B in the

N
1
-axis are the same and equal to d

3
/c

13
a
13

[eqn (8), because a Lotka}Volterra predator
nullcline is perpendicular to the resource axis].
Then for the point E

13
to be in the dN

2
/dt'0

region, and point B being above resource null-
cline, the B coordinate at N

3
must be greater than

NK
3

in eqn (8). That relation of coordinates results
in the following inequality.
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where Q is a combination of parameters that
relates the competitive abilities of species 2 and
3 [see eqns (9, 11)]. The expression of Q is
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When Q equals 1, both species 2 and 3 can
tolerate the same levels of scarcity of their com-
mon resource (species 1). Thus, in a situation
of pure exploitative competition (with a

23
"0)

coexistence is not possible. If Q(1, then
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: species 2 tolerates lower
levels of resource than 3. On the other hand, if
Q'1, then d
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: species 3 is
a better competitor than 2 and always excludes it.
If condition (9) holds, Q cannot be negative [see
in Appendix A how to obtain eqns (12) and (13)].

If the sign of eqn (12) is reversed, this means
that B is below the resource nullcline, and at the
same time, that E

13
lies in the zone where

dN
2
/dt(0, and IG prey could not invade a com-

munity composed by resource and IG predator
at equilibrium.

IG PREDATOR INVASION CONDITION

The invasibility condition for species 3 is ob-
tained doing N

3
"0, plotting nullcline equations

(2}4) in the N
1
N

2
plane, and verifying that the

equilibrium coordinates for the resident species,
now resource and IG prey (point E

12
), lie in the

region for which dN
3
/dt'0.

Figure 4 shows that point A belongs to the IG
predator nullcline, E

12
to the resource nullcline,

and the coordinates of E
12

and A in the N
1
-axis

are the same and equal to d
2
/c

12
a
12

(because
both points belong to the IG prey nullcline,
which is perpendicular to the resource axis).
Then, E

12
will be in the dN

3
/dt'0 zone, and

point A below the resource nullcline, if the
coordinate of A in the N

2
-axis is lower than NK

2
in eqn (7). The relation between these two
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coordinates results in the inequality
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If the sign of eqn (14) is reversed, that is be-
cause point A lies above the resource nullcline,
and E

12
in the dN

3
/dt(0 zone of the IG pred-

ator nullcline, making the invasion impossible.
Appendix A shows how to obtain eqn (14) from
the relation of coordinates.

INVASION OUTCOMES

On combining inequalities (12) and (14), four
cases result.

f Case 1, inequality (12) holds, inequality (14) does
not hold. Points A and B are above the resource
nullcline and there is no positive equilibrium
(E

123
). In this case, species 2 can invade when

rare, but species 3 cannot.
f Case 2, inequality (12) does not hold, inequality

(14) holds. Points A and B are below the re-
source nullcline and there is no positive equilib-
rium (E

123
). Species 2 cannot invade when rare,

but species 3 can invade.
f Case 3, inequalities (12) and (14) hold. Points

A and B are below and above the resource
nullcline, respectively, and line AB [intersec-
tion between eqns (3) and (4)] passes through
the resource nullcline giving the positive equi-
librium (E

123
, as shown in Fig. 2). Both species

2 and 3 can invade when rare.
f Case 4, inequalities (12) and (14) do not hold.

Points A and B are above and below the re-
source nullcline, respectively, and the line AB
gives a positive equilibrium (E

123
), but neither

species (2 or 3) can invade when rare.

These cases resemble the four cases of the
Lotka}Volterra model of competition. The "rst
two correspond to species 2 only or species 3 only
winning. The remaining two are the situations
where a positive three-species equilibrium exists.
It is obvious that case 4 does not promote co-
existence, and the three-species equilibrium shall
be unstable [see Holt & Polis (1997) for the local
stability analysis].
Case 3 allows the two boundary equilibria (E
12

and E
13

) to be invasible, but does not tell us
anything about the stability of the three-species
equilibrium. Numerical analysis (Holt, 1996;
Holt & Polis, 1997) shows that the system can
display limit-cycle behavior. So the analogy with
the four classical competition cases is not perfect.

Parameter Space Analysis

Inequalities (12) and (14) of the last section can
be plotted in a plane with Q and ra

23
as axes,

providing a useful parameter space. The Q-axis
measures the competitive ability of species 2:
lower values, below 1, mean that species 2 is
a better competitor, and for Q greater than 1,
species 2 is always excluded by species 3. On the
other hand, the product ra

23
describes the e!ect

of resource intrinsic growth rate and, more im-
portantly, the e!ect of the magnitude of intra-
guild predation (a

23
). In a plot of Q against ra

23
[Fig. 5(a)], the right-hand side of eqn (12) is
a decreasing positive hyperbolic function that
tends to zero with in"nity and is equal to 1 when
ra

23
"0; the right-hand side of eqn (14) is

a straight line with negative slope, equal to
1 when ra

23
"0, and zero when ra
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It is important to consider that the expression

for Q [eqn (13)] depends on the parameters
K, a

12
, a

13
, c

12
, and c

13
, that also appear at the

right-hand sides of eqns (12) and (14). So the only
way to vary Q without changing them is to vary
d
2

and d
3
. This is a limitation because we cannot

consider the in#uence of the other parameters on
coexistence. However, the d @s are good predictors
of the competitive ability because they can be
considered proportional to the minimal energetic
requirements for growth in isocline models such
as those studied by LeoH n & Tumpson (1982) and
Tilman (1982). Thus, r, a

23
and c

23
[they do not

appear in eqn (13)] are free to vary.
In the following sections, it is supposed that

condition (9) holds for both consumers. Never-
theless this is not strictly necessary, and the
relation could be inverted for the IG predator,
a situation that does not prevent the existence of
a three-species equilibrium, but means that the
top predator cannot grow on the common re-
source alone.



FIG. 5. Parameter space Q against ra
23

, from conditions (12, 14). Part (a) shows the invasibility regions and the convention
to name them. For ra

23
'(c

13
/c
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)Ka
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a
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, the right-hand side of eqn (14) is set to zero (see dashed lines). Parts (b)}(d)
present numerical examples plotted in a double logarithmic scale using "xed parameters: K"100, a

12
"

a
13
"c

12
"c

13
"0.1, with c

23
"0, 0.1, and 1 in (b), (c), and (d), respectively.
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COEXISTENCE REGION

Figure 5(a) shows that both boundary equilib-
ria are invasible when the right-hand side of
eqn (12) is greater than the right-hand side of
eqn (14), that is
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, the right-hand side of eqn (14) becomes
negative. Condition (9) sets Q as positive, then
zero must be substracted in eqn (15) giving
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There is always a nonnegative ra
23

solution for
DQ'0 [eqns (15, 16)] because the right-hand
side of eqn (12) is always positive. This means
that there is always a set of values for ra

23
that

allow for the invasion of IG prey and IG pred-
ator.

Figure 5(a) also shows that for ra
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, the right-hand side of eqn (14)
decreases faster than the right-hand side of eqn
(12). But for ra
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, the right-
hand side of eqn (14) was set to zero and DQ [eqn
(16)] only decreases. So the following is true:
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TABLE 1
<ariation of equilibrium densities with respect to

the free parameters in eqns (12) and (14)
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Then DQ is maximal at ra
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If we derivate DQ with c
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, the result is
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, thus the increase
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broadens the coexistence region. If
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, the derivative is zero
[compare eqns (15) and (16)].

EQUILIBRIA

The three-species equilibrium values [eqn (10)]
also depend on r, a
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and c

23
. The derivatives of
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on the same derivatives for NK
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then NK
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from eqn (10) is rewritten as
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Since the resource density could never be
greater than K (it is indeed lower than K for
a feasible three-species equilibrium):

a(b . (22)

Using eqns (19}21) the partial derivatives of
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, r and c

23
are

LNK
1
/La

23
"rKc

23
(b!a)/b2 , (23)

LNK
1
/Lr"Kc

23
a
23

(b!a)/b2 , (24)

LNK
1
/Lc

23
"K

b(La/Lc
23

)!a (Lb/Lc
23

)
b2

. (25)

Inequality (22) makes LNK
1
/La

23
and LNK

1
/Lr

positive; eqns (19, 20) show that a and b depends
linearly on a

23
and r, but the di!erence b!a, is

independent of them. Then, the magnitude of
LNK
1
/La

23
and LNK

1
/Lr decrease with the squares of

a
23

and r, respectively.
There is no easier way to determine if LNK

1
/Lc

23
is positive or negative because the relative magni-
tudes of La/Lc

23
and Lb/Lc

23
are unknown.

Nevertheless, with the aid of geometry we can
guess the sign of LNK

1
/Lc

23
. From Figs 2 and 4, it

can be observed that as c
23

grows the slope of the
IG predator nullcline becomes more negative
[eqn (4)], moving point A towards the N

1
-axis.

E
123

is part of the line AB and of the resource
nullcline at the same time, so if c

23
increases and

A moves towards the N
1
-axis, then NK

1
must in-

crease in order to coincide with the resource
nullcline. Then it is implicit that LNK

1
/Lc

23
'0 for

a three-species equilibrium when both two spe-
cies boundary equilibria are invasible (Case 3).

The signs of the derivatives of NK
2

and NK
3

with
respect to a

23
, r and c

23
are shown in Table 1 (see

the equations in Appendix A). The sign of
LNK

3
/La

23
depends on the numerator of its expres-

sion (see Appendix A), which is

c
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We found above that LNK
1
/La

23
decreases with

the square of a
23

. Then, as a
23

increases, the sign
of LNK

3
/da

23
changes from positive to negative,

having a maximum.

Model Simulations

Figure 5(b)}(d) shows three numerical exam-
ples of the parameter space in which the value of
the conversion constant for the IG predator, c

23
,

is varied starting with zero (c
23
"0), through an

intermediate value (c
23
"0.1), and "nally reach-

ing a very high value (c
23
"1). The behavior of

the model changes dramatically. The graphs are
in a double logarithmic scale.
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The case with c
23
"0, depicted in Fig. 5(a)

occurs when species 3 attacks but does not eat
species 2 (or eats species 2 with no positive e!ect
on its population density). Under this condition,
there are regions in which either species 2 or 3 can
invade, and also a region in which neither can
invade when rare. So coexistence is impossible.

In Fig. 5(b), for c
23
"0.1, there are regions

in which species 2 or 3 invade, both invade or
neither invade. Under this situation, coexistence
is possible for Q(1, and intermediate values
of ra

23
.

Finally, if c
23
"1, the indeterminate region for

invasion disappears and the coexistence region is
larger [Fig. 5(d)].

Increases in c
23

will extend the zone in which
species 3 can invade [eqn (14)] and do not a!ect
the species 2 invasion zone [eqn (12)], which
extends the region of coexistence for lower values
of the product ra

23
.

FIG. 6. Densities of species 1 ( ), 2 ( ) and 3 ( ) as
of values for Q, obtained changing d

3
: (a) Q"8.5/9 (d

3
"0.15)

(d
3
"0.60), (e) Q"3/9 (d

3
"0.70), (f ) Q"2/9 (d

3
"0.80).

a
12
"a

13
"c

12
"c

13
"0.1, c

23
"0.9 and d

2
"0.1. In the regio

(7)] and E
13

[eqn (8)], are valid.
In Fig. 6, equilibrium densities for species 1}3
are shown as a function of a

23
for di!erent values

of Q and with c
23
"0.9. The graphs show that as

Q becomes lower [graphs (a)}(f )], the zone of
coexistence expands, mainly towards greater
values of a

23
. Thus, two of the conditions for

coexistence, that species 2 is a better competitor
than species 3 (Q value) and an intermediate
magnitude of intraguild predation (a

23
value), are

not independent. From graphs (a)}(f ), we see that
resource grows and IG prey decreases with a

23
.

For IG predator, graphs (a)}(d) show that its
density grows with a

23
, but (e) and (f ) shows that

it decreases for higher values, having a maximum
as predicted in the section above. This maximum
does not appear from (a) to (d), because for
a
23

outside the coexistence region, the three-
species equilibrium does not exist.

To complete the numerical results, Fig. 7
shows examples of invasion dynamics for three
a function of a
23

in a double logarithmic scale, for a sequence
, (b) Q"7/9 (d

3
"0.30), (c) Q"5/9 (d

3
"0.50), (d) Q"4/9

The remaining parameter values are: r"1, K"100,
ns with horizontal lines only boundary equilibria, E

12
[eqn



FIG. 7. Simulation of invasion dynamics for model (1): (a) species 3 cannot invade the equilibrium between species 1 and
2 with a

23
"0.01. In (b) and (c), species 3 and 2 can invade the resident equilibrium, respectively, with a

23
"0.10, leading to

the same positive equilibrium. In (d), species 2 cannot invade the equilibrium between species 1 and 3 with a
23
"0.20.

Parameter values: r"1, K"100, a
12
"a

13
"c

12
"c

13
"0.1, c

23
"0.9 and d

2
"0.1, d

3
"0.7. Species 1 ( ), 2 ( )

and 3 ( ).
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values of a
23

taken from the density pro"le
shown in graph (e) of Fig. 6. We see that for
intermediate values of a

23
, both species 2 and

3 can invade the equilibrium of the other two
reaching a new equilibrium state, but that at
extreme values of a

23
the original two-species

equilibria are restored.

Models with Saturating Functional Responses

The relative simplicity of the Lotka}Volterra
model of IGP [eqn (1)] makes it easier to obtain
the above results, because the nullclines are linear
(planes in a 3D space). It is possible to include
nonlinearities such as Holling type II functional
response:
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1#h
13

N
1
#h

23
N

2
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with (h
ij
) being the handling time of species

j upon species i. The above model equations give
curved nullclines for common resource and IG
prey, but the IG predator nullcline is a plane.

When one of the consumers is absent, the min-
imum resource density needed for the resident
consumer is equal to d

i
/(c

1i
a
1i
#h

1i
d
i
), in model

eqn (26). As IG predator density increases, the
resource density needed for IG prey growth must
increase to compensate for predation pressure.
On the other hand, as IG prey density increases,
the amount of common resource needed for IG
predator growth decreases. Then both nullclines
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will coincide only if d
2
/(c

12
a
12

!h
12

d
12

)(d
3
/

(c
13

a
13

!h
13

d
3
). Again, a necessary condition for

a positive equilibrium involves the competitive
superiority of the IG prey.

The resource nullcline will have the general
form depicted in Fig. 8, given that carrying capa-
city is high enough to allow the presence of
&&humps'' for the boundary two species communi-
ties. The competitive superiority condition gives
lower N

1
coordinates for the resource and IG

prey equilibrium. Thus, it is more likely to have
limit cycle behavior for a resource}IG prey inter-
action, than in the other consumer}resource
dynamics. Curvature causes the IG prey and
predator nullclines to coincide along a curved
line AB, that could cross resource nullcline more
than one time giving more than one three-species
equilibrium, as Fig. 8 shows, via bifurcation.

Although a set of invasibility conditions like
eqns (12) and (14) were not found, the question is
the same: Is the combined density of resident
species located in the dN

i
/dt'0 zone for invader

species (i) nullcline? But now there is the possibil-
ity that resident species do not have a constant
combined density, having a limit cycle that
switch between the dN

i
/dt'0 and the (0 zone

for the invader. Figure 9 shows an example simu-
lation of model (26), in which the boundary com-
munity of resource and IG prey undergo
a predator}prey limit cycle but a stable equi-
FIG. 8. With model equations like eqn (26), IG prey and pre
can pass through the resource nullcline one or more times giving
dotted section of AB is below the resource nullcline.
librium is the attractor for the resource and
IG predator community. Invasion of both
resident pairs leads to a stable three-species
equilibrium.

Discussion

For the simple Lotka}Volterra model of intra-
guild predation, described by eqn (1), a necessary
but not su$cient condition for coexistence is that
the intraguild prey must be a better competitor
than the intraguild predator in the consumption
of their shared prey [eqn (11)]. This result is
common to previous models with intraguild
predation. Polis et al. (1989) and Holt & Polis
(1997) present examples using Lotka}Volterra
models with or without a resource equation, and
also with Schoener's nonlinear model for ex-
ploitative competition (Schoener, 1974, 1976).
However, the complexity of natural food webs
can make this rule of competitive superiority for
the IG prey too simple to be applicable. Indeed,
Navarrete et al. (2000), working with an intertidal
food web found coexistence, being the IG pred-
ator the best competitor. These authors attribute
this to the open nature of the IG prey and IG
predator populations (for example, IG predators
are not strictly dependent on local resources),
and to the large di!erences in body size in the IG
prey and predator populations.
dator nullclines cut forming the curved line AB, such a curve
simple (a) or multiple (b) equilibrium points (E

123
, E*

123
). The



FIG. 9. Simulation of invasion dynamics for model (26): (a) species 1 and 2 with limit-cycle dynamics, (b) equilibrium
dynamics between species 1 and 3, (c) invasion of species 1 and 2 community by species 3 leads to a stable three-species
equilibrium, and (d) invasion of species 1 and 3 equilibrium by species 2 leads to the same equilibrium as (c). Parameter values:
r"1, K"1.6, a

12
"a

13
"c

12
"1, a

23
"c

13
"1.5, c

23
"2, h

12
"h

13
"h

23
"1 and d

2
"0.05, d

3
"0.9. Species 1 ( ),

2 ( ) and 3 ( ).
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The main new result of the present work is to
show that, with the aid of the nullcline analysis it
is possible to obtain a set of analytical conditions,
in the form of explicit inequalities (12, 14), for
invasion of both intraguild prey and predator,
and thus for coexistence that includes the earlier
&&competitive'' condition, in the form of the Q
value, plus a &&predatory'' condition in the form of
the magnitude of intraguild predation measured
by a

23
. Working with such inequalities, some

other analytical results can be obtained [inequal-
ities (17, 18), Table 1]. With this approach, it is
not necessary to perform a local stability analysis
of the three-species equilibrium if we accept the
following.

1. Species 1, the common resource is always
present. So the problem of coexistence is for
species 2 and 3.

2. Coexistence means that both species 2 and
3 can invade, no matter which is the resulting
global dynamics.
These two statements also help to explain that
the outcomes of model equations (1) are similar
to those of the Lotka}Volterra competition
model: species 2 win, species 3 win, both coexists,
and either can win. The asymmetrical conditions
experienced by both species, prevents them from
occupying the same niche.

When coexistence is possible, it is achieved at
intermediate values of ra

23
[eqn (17)]: the nega-

tive e!ect that intraguild predator imposes on
intraguild prey must be high enough to prevent
competitive dominance of intraguild prey, but
not so high as to exclude it. The range of inter-
mediate values depends on the value of Q, that
must be lower than 1, as seen in Fig. 5(a)}(d): as
Q decreases, the zone of coexistence becomes
greater.

As was mentioned in the introduction, the
model equations (1) were tested by Diehl &
Feissel (2000). These authors were interested in
the e!ect of enrichment upon coexistence, and
found that as K becomes larger species 2 excludes
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3, species 2 and 3 coexist, and "nally species
3 excludes 2. In terms of the parameter space of
Fig. 5, this is equivalent to the increase of Q [Q
grows with K to a plateau of Q"1, see eqn (13)]
that compares the competitive abilities of species
2 and 3. As K becomes larger (and then Q), the
competitive advantage of species 2 decreases in
relation to species 3. This is easy to see in Figs 2}4:
as K grows, the upper corner of the resource
nullcline moves up and the E

12
and E

13
coordi-

nates increase in the N
2

and N
3

direction, respec-
tively, giving the following sequence: A and B are
above resource nullcline (Case 1), A and B are
opposite (Case 3 in the example of Fig. 2), and
A and B are below the resource nullcline (Case 2).

An experimental approach is needed to test the
predictions about the e!ect of the parameter a

23
,

the intraguild predation pressure, and to know
how wide or narrow is the coexistence region for
this parameter for a "xed or variable value of K.
Attack rate parameters such as a

23
can be

changed by reducing the frequency of contact
between individuals by a method such as that
used by Luckinbill (1973). Unfortunately, this
will also a!ect a

12
and a

13
.

The magnitude of c
23

changes the extent of the
coexistence region [eqn (18)]. As seen in Fig. 5(b),
with c

23
"0 coexistence is not possible for any

value of Q. Holt & Polis (1997) have used a gen-
eral additive model in which the role of c

23
was

modeled with a function which describes how the
per capita growth rate of the IG predator is en-
hanced by consuming the IG prey. In the words
of these authors: &&This net demographic e!ect
encompasses both direct caloric e!ects provided
by the consumption of the IG prey and any costs
due to reduced intake of the basal resource (e.g.,
because of time spent handling the IG prey, re-
ducing the time available to search for the basal
resource).'' Thus the IG predator must achieve
a positive e!ect (c

23
'0). A situation in which

c
23

is equal or near to zero occurs when the IG
predator kills but does not eat IG prey (which
corresponds to an extreme form of interference
competition), or eats it but the energy taken is
low, and as a consequence, the energetic costs of
intraguild predation exceeds its bene"ts. So as
c
23

grows and the bene"ts are greater, the zone
in which IG predator dominates also becomes
greater as seen in Fig. 5(c) and (d).
In models with nonlinear functional response
like eqn (26), a great di!erence is that resident
species could have unstable dynamics, and this
raises some interesting questions. For example,
suppose an invasion of the IG predator when
both resource and IG prey undergo a limit cycle.
It is possible to have one part of that cycle inside
the dN

3
/dt'0 region of the IG predator null-

cline and the remaining inside the dN
3
/dt(0

region. Does this implie that there is a succession
of &&good'' and &&bad'' times to invade? But numer-
ical simulations perhaps are not a good way to
explore this, because in models like eqns (1) and
(26) extinction is asymptotic, so, when the resi-
dents return to the invasion favorable conditions,
there will be always a reduced but non-zero den-
sity of the invader awaiting to grow. Of course,
the whole cycle could be inside the dN

3
/dt'0 or

(0 region. It is possible that the "nal answer
would be related to a sort of &&mean transit time''
of the resident cycle into the invasion favorable
region de"ned by the invader's nullcline.

Given the lower resource demands of IG prey
(if the hypothesis of competitive superiority
holds), in a system governed by eqn (26) the
resource}IG prey equilibrium would become less
stable than the resource}IG predator one if the
carrying capacity increases (enrichment e!ect in
a predator}prey system with self-limitation in the
prey, and saturating predator functional re-
sponse). Then, an invasion of the IG predator is
likely to lead the system to a stable situation
[Fig. 9(c)]. But this is not a general conclusion,
because the internal equilibrium could also be
unstable; or there could be more than one three-
species equilibrium if bifurcation phenomena are
present given the nullcline curvatures (Fig. 8),
a situation that does not happen with planar
nullclines.

It is important to note that in this paper, what
is termed invasibility is not necessarily equivalent
to stable internal equilibria. Actually, it is pos-
sible that all species can invade when rare but
instead of a stable internal equilibria we have
a stable limit cycle (Holt & Polis, 1997). Then,
when there is invasibility it is better to talk about
uniform persistence instead of ecological stability.

I am very grateful to Diego RodrmHguez for assist-
ance with the writing. The paper bene"ted from
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APPENDIX A

Invasion Conditions for Species 2

In Fig. 3, the equilibrium point E13 has a coor-
dinate on the N3-axis equal to [from eqn (8)]:

N3 at E13"
r

a13K AK!
d3

c13a13B . (A.1)

The coordinate of E13 on the N1-axis,

NK 1"
d
3

c a
.

13 13
Substituting this expression into the equation of
the species 2 nullcline [eqn (3)], yields the coordi-
nate of B on the N

3
-axis:
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The species 1}species 3 equilibrium is invasible
by species 2 if N

3
at E

13
(N

3
at B (see Fig. 3),

which translates to
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It is useful to de"ne the following quantities:
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Thus, it is true that
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. (A.4)

With the aid of eqn (A.4), the invasion condi-
tion for species 2 [eqn (A.3)] becomes
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)
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Invasion Conditions for Species 3

In Fig. 4, the equilibrium point E
12

has a coor-
dinate on the N

2
-axis equal to [from eqn (7)]
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and the coordinate of point A on the same axis is
obtained by substituting the coordinate of E

12
on
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the N
1
-axis,
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,

in the equation of the species 3 nullcline [eqn (4)],
and the result is
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Now, the species 1}species 2 equilibrium is
invadible by species 3 if N

2
at E

12
'N

2
at A (see

Fig. 4), which translates to
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Using eqn (A.4) inequality (A.7) becomes the
condition invasion for species 3:
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The signs of the NK
1

derivatives makes LNK
2
/
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23

, LNK
2
/Lr, and LNK

2
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negative, LNK
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/Lr, LNK
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positive, and LNK
3
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23
undetermined.
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