
Numerical responses in resource-based mutualisms: A time
scale approach

Tomás A. Revilla
Biology Center AS CR, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic

H I G H L I G H T S

� Simple resource-based mechanisms of mutualism are proposed.
� Resource ephemerality allows the derivation of mechanistic numerical responses.
� Limitations in resource delivery cause diminishing returns of mutualistic service.
� Consumers of mutualistic resources follow Schoener's competition equations.
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a b s t r a c t

Many mutualisms involve inter-specific resource exchanges, making consumer–resource approaches
ideal for studying their dynamics. Also in many cases these resources are short lived (e.g. flowers)
compared with the population dynamics of their producers and consumers (e.g. plants and insects),
which justifies a separation of time scales. As a result, we can derive the numerical response of one
species with respect to the abundance of another. For resource consumers, the numerical responses can
account for intra-specific competition for mutualistic resources (e.g. nectar), thus connecting competi-
tion theory and mutualism mechanistically. For species that depend on services (e.g. pollination, seed
dispersal), the numerical responses display saturation of benefits, with service handling times related
with rates of resource production (e.g. flower turnover time). In both scenarios, competition and
saturation have the same underlying cause, which is that resource production occurs at a finite velocity
per individual, but their consumption tracks the much faster rates of population growth characterizing
mutualisms. The resulting models display all the basic features seen in many models of facultative and
obligate mutualisms, and they can be generalized from species pairs to larger communities.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

- Nous ne notons pas les fleurs, dit le géographe

- Pourquoi ça! c'est le plus joli!

- Parce que les fleurs sont éphémères

Le Petit Prince, Chapitre XV – Antoine de Saint-Exupéy

Early attempts to model the dynamics of mutualisms were based
on phenomenological descriptions of interactions. The best known
example involves changing the signs of the inter-specific competition
coefficients of the Lotka–Volterra model, to reflect the positive effects
of mutualism (Vandermeer and Boucher, 1978; May, 1981). This
simple, yet insightful approach, predicts several outcomes depending
onwhether mutualism is facultative or obligatory. One example is the

existence of population thresholds, where populations above thresh-
olds will be viable in the long term, but populations below will go
extinct. The same approach, however, reveals an important limitation,
that the mutualists can help each other to grow without limits, in an
“orgy of mutual benefaction” (sic. May, 1981), yet this is never
observed in nature. One way to counter this paradox is to assume
that mutualistic benefits have diminishing returns (Vandermeer and
Boucher, 1978; May, 1981), such that negative density dependence
(e.g. competition) would catch up and overcome positive density
dependence (mutualism) at higher densities. This makes intuitive
sense because organisms have a finite nature (e.g. a single mouth,
finite membrane area, minimum handling times, etc.), causing
saturation by excessive amounts of benefits. Other approaches con-
sider cost-benefit balances that change the sign of inter-specific
interactions from positive at low densities (facilitation) to negative
at high densities (antagonism) (Hernandez, 1998).

Holland and DeAngelis (2010) introduced a general framework
to study the dynamics of mutualisms. In their scheme two species,
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1 and 2, produce respectively two stocks of resources which are
consumed by species 2 and 1, according to Holling's type II
functional response, and which are converted into numerical
responses by means of conversion constants. In addition, they
consider costs for the interaction in one or both of the mutualists,
which are functions of the resources offered to the other species,
also with diminishing returns. In their analyses, the resources that
mediate benefits and costs are replaced by population abundances
as if the species were the resources themselves. This assumption
enables the prediction of a rich variety of outcomes, such as Allee
effects, alternative states, and transitions between mutualisms and
parasitisms.

The work of Holland and DeAngelis (2010) uses concepts of
consumer-resource theory to study the interplay between mutualism
and antagonism at population and community levels, but the
functional responses are not actually derived from first principles.
In other words, there is no explicit mechanism that justifies why the
resource provided by species 1, can be replaced by the abundance of
species 1 (or some function of it). If the functional responses are
considered phenomenologically that is not a problem, consumer-
resource theory makes predictions using phenomenological relation-
ships, like the Monod and Droop equations (Grover, 1997). For
example, the half-saturation constant for mutualism in species 1 is
a trivial concept, it is just the abundance of species 2 that produces
half of the maximum benefit that species 1 can possibly receive. But
things can be conceptually problematic when these saturating
responses are rewritten and interpreted in the style of Holling's type
II disc equations (Vázquez et al., 2015) because, what is the handling
time of a plant that uses a pollinator or seed disperser? Or at which
rate does a plant attack a service?

I will show that in some scenarios of mutualism, it is very
convenient to consider the dynamics of the resources associated
with the interaction in a more explicit manner, before casting
them in terms of the abundances of the mutualists. As it turns out
in many situations, these resources, or the resource providing
organs, have life times that are on average much shorter than the
lives of their producers and consumers. For example, the life of a
tree can be measured in years and that of a small frugivore in
months, but many fruits do not last more than a few weeks. Given
their fragility and cost (Primack, 1985; McCall and Irwin, 2006),
flowers are definitely ephemeral in comparison with pollinators
like hummingbirds, but certainly not to mayflies.1 Processes like
diffusion and chemical reactions, can remove nutrients faster than
the life cycles of their intended consumers. Taking advantage of
this fact, the resources can be assumed to attain a steady-state
against the backdrop of the population dynamics, and thus be
quantified in terms of the present abundances of the providers and
the consumers in a mechanistic manner. Using this approach, it is
possible not just to derive the numerical responses in terms of
populations abundances, but also to do it in terms of parameters
that could be measured, such as the rates of resource production,
their decay, and consumption. Intra-specific competition for
mutualistic benefits can be related to consumption rates, and
concepts such as the “handling time” of a plant would make sense,
not just intuitively. This in turn opens the possibility of framing
the costs of mutualism by means of trade-offs relating vital
parameters. The scenarios presented here are meant to promote
more thinking in this direction, that of considering the separation
of time scales, in order to tie together mutualism, competition, and
consumer-resource theories in more mechanistic ways.

2. Exchanges of resources for resources

Consider two species i; j¼ 1;2 providing resources to each other.
Their population biomasses ðNiÞ change in time ðtÞ according to the
differential equations:

dN1

dt
¼ G1ð�ÞN1þσ1β1F2N1

dN2

dt
¼ G2ð�ÞN2þσ2β2F1N2 ð1Þ

where Fi is the amount of resources or food provided by species i, βi is
the per-capita consumption rate per unit resource by species i, and σi
its conversion ratio into biomass. The function Gi is the per-capita
rate of change of species i when it does not interact with species j by
means of the mutualism. The resource dynamics is accounted by a
second set of differential equations:

dF1
dt

¼ α1N1�ω1F1�β2F1N2

dF2
dt

¼ α2N2�ω2F2�β1F2N1 ð2Þ

Here I assume that the resource is produced in proportion to
the biomass of the provider with per-capita rate αi, and it is lost or
decays with a rate ωi if it is not consumed. I also assume that the
physical act of resource consumption does not have an instanta-
neous negative impact such as damage or death, on the provider
(e.g. they do not constitute vital body parts). There are costs
associated with resource production, but they do not affect the
derivations that follow here as well as in the next section. Never-
theless, the potential consequences of different kinds of costs are
briefly discussed at the end of this work.

As stated in the introduction, the life time of food or resource items
can be much shorter than the dynamics of the populations; in other
words, we can consider a slow dynamics for the populations and a fast
one for the resources (Rinaldi and Scheffer, 2000). As a consequence,
the resources will asymptotically approach a steady-state or quasi-
equilibrium dynamics well before the populations display significative
changes. Thus, assuming that dFj=dt � 0 in Eqs. (2), the steady-state
amount of resources

Fj �
αjNj

ωjþβiNi
ð3Þ

can be substituted in the dynamical equations of the populations (1)
using the appropriate indices:

dN1

dt
¼ G1ð�Þþ

σ1β1α2N2

ω2þβ1N1

� �
N1

dN2

dt
¼ G2ð�Þþ

σ2β2α1N1

ω1þβ2N2

� �
N2 ð4Þ

In model (4), the larger the receiver population, the lower the per-
capita rates of acquisition of mutualistic benefits. The decrease in
returns experienced by receiver i happens because the resource
produced by the provider ðαjNjÞ must be shared among an increasing
numbers of individuals, each taking a fraction βi=ðωjþβiNiÞ. This in
effect describes intra-specific competition for a finite source of energy
or resources, as originally modeled by Schoener (1978), with the only
difference that in Schoener's models resource supply rates are
constant. The interaction mechanism can be generalized to multiple
species, by adding additional consumption terms in Eqs. (1) and (2).
After the steady-state assumption, the multispecies version of Eqs. (4)
for species 1 will be

dN1

dt
¼ G1ð�Þþ

X
j

σj1βj1αjNj

ωjþ
P

kβjkNk

8<
:

9=
;N1 ð5Þ

where the index k belongs to species in the same guild as species 1 (its
competitors, including itself), and index j belongs to the guild of its

1 Mayflies belong to the order Ephemeroptera a word derived from the Greek
ephemera meaning short-lived, and ptera meaning wings. This is a reference to the
short lifespan of most adult mayflies.

T.A. Revilla / Journal of Theoretical Biology 378 (2015) 39–4640



mutualistic partners. Similar equations apply for the other species,
with changes in the appropriate indices. Eq. (5) is a multi-resource
extension of Schoener (1978) competition models.

Characterizing the system dynamics requires explicit formula-
tions of the growth rates in the absence of mutualistic benefits, i.e.
the Gi functions. These functions can range from very simple to
very complicated depending on the biology of the species, alter-
native food sources, whether mutualism is obligate or facultative,
self-regulation mechanisms, interactions with other species, and
even the interactions between species 1 and 2 by means other
than mutualism (Holland and DeAngelis, 2010). For illustration, I
will consider the widespread assumption (Holland and DeAngelis,
2010; Johnson and Amarasekare, 2013) that Gi is linearly decreas-
ing on species i abundance:

GiðNiÞ ¼ ri�ciNi ð6Þ
where ci40 is a coefficient of self-limitation and ri is the intrinsic
growth rate of i, which is positive for facultatives and zero or
negative for obligate mutualists. By substituting (6) in (4), it turns
out that species 1 increases ðdN1=dt40Þ if

N24
ðc1N1�r1Þðω2þβ1N1Þ

σ1β1α2
ð7Þ

and decreases otherwise. With an equal sign (7) is the nullcline of
species 1. The nullcline is an increasing parabola in the positive
part of the N1N2 plane. This nullcline has two roots in the N1 axis,
one at �ω2=β1 which is always negative, and one at r1=c1 which is
negative or zero if species 1 is an obligate mutualist, or positive if
it is a facultative mutualist. For a facultative mutualist r1=c1 is also
its carrying capacity, while for an obligate mutualist a negative r1
can be its intrinsic mortality. Species 2 nullcline is similar with the
indices swapped. Fig. 1 shows the possible outcomes of the
interaction, which ranges from having a globally stable mutualistic
equilibrium when both species are facultative mutualists, to a
locally stable equilibrium and dependence on the initial conditions
when one or both species are obligate mutualists. The dynamics
under the steady approximation (4) is quantitatively different than
that in the original mechanism (1) and (2), but this discrepancy
can be very low if the resource dynamics is fast enough, as shown
numerically in the Appendix.

Note that in this resource-for-resource model, the resources are
assumed to be released in an external pool, which is accessible, in
principle, for all members of each population. A good example is
non-symbiotic bacteria that raise soil nitrogen, which is absorbed
by the plants, which in turn release organic exudates in the soil,
which is taken by the bacteria (Vadakattu and Paterson, 2006).
Another good example is provided by lichens, where algae provide
photosynthetic products to fungi, which in turn provide nutrients
to the algae (Holland and DeAngelis, 2010), yet neither algal cells
nor fungal hyphae live inside each other bodies. A very common
scenario, however, involves one species hosting an endosymbiont
(Holland and DeAngelis, 2010), like, e.g. legumes (hosts) and
micorrhizal fungi (symbionts). In this case, each plant assimilates
the nutrients (e.g. nitrogen) provided by its private population of
fungi, which in turn can only take the organic compounds
provided by its plant. For this scenario, equations like (1) account
for the biomass dynamics of an individual plant, instead of all
plants, and for their private micorrhizal populations (a detail
seldom considered by generalized models of mutualism).

3. Exchanges of resources for services

This time I will consider that only species 1 is the food provider,
and species 2 gives a service to species 1 as a consequence of food
consumption. This situation occurs under pollination or in frugivorous

seed dispersal for example. Thus, let us assume that species 1 is a
plant and species 2 an animal. The dynamical equations for plants and
animals are

dN1

dt
¼ G1ð�ÞN1þσoβoFNoþσ1βFN2

dN2

dt
¼ G2ð�ÞN2þσ2βFN2 ð8Þ

In this scheme F is the number of flowers or fruits produced by
the plant, and β is the rate of pollination or frugivory by the animal.
The animal's equation is not different than before (1). The plant's
equation must be changed to reflect that plants do not eat anything
provided by the animals. This is an important detail that makes the
conversion ratios or yields ðσiÞ very different between plants and
animals. For animals it is generally assumed, in particular when
populations are accounted by biomass rather than numbers, that
conversion ratios are smaller than 1 ðσ2o1Þ. For plants, however, the
overall yield can be smaller or larger than one. This is because each
flower or fruit can give rise to a potentially large number of new
adult plants (a so called “amplification factor” by Fagan et al., 2014),
with upper limits imposed by the number of ovules or seeds, per
flower or fruit respectively. This is not just valid if populations are
accounted by numbers, but also if we consider biomass: a new
generation of plants does not grow out of resources taken from the
animals, but from resources that are not accounted by the model (e.g.
water and nutrients). Of course, risks associated with the interactions
with the animal (e.g. pollen eating and seed mastication), means that
the yield can end up being smaller than 1.

The additional plant term σoβoFNo acknowledges that pollina-
tion or seed dispersal could be performed by a different animal
than species 2 (species “o”), or by abiotic factors like wind (then
βo;No would be proxies of, e.g. wind flux, and σo the corresponding
yield). Flower or fruit production is proportional to plant's abun-
dance, and losses occur due to withering, rotting, pollination or
consumption:

dF
dt

¼ αN1�ωF�βoFNo�βFN2 ð9Þ

The case of flowers deserves particular attention. Whereas a
single act of frugivory denies a fruit to other individuals ipso facto,
a single act of pollination will hardly destroy a flower. Certainly, each
pollination event brings a flower closer to fulfilling its purpose, to
close, and to stop giving away precious resources (nectar). Each
pollination event also makes a flower less attractive to other
pollinators, as it becomes less rewarding or damaged. This means
that the decrease in flower quantity due to pollination ðβFN2Þ
involves a certain amount of decrease in quality, rendering them
useless for plants and animals, a little bit each time. Thus, the
pollination rate in (9) shall rather be cast as κβFN2 where 0oκr1 is
the probability that a flower stops working as a consequence of
pollination. This complication can be relevant in specific scenarios,
but it does not affect the generality of the results derived, which is
why it is not considered (so κ¼ 1). A second important detail
concerning flowers is that the visit by an individual pollinator may
not cause pollination, because that individual has not yet visited a
flower for the first time. Thus, Eqs. (8) and (9) are only valid after
some pollinators have already visited some flowers.

Similar to the previous scenario, assume that acts of pollination
or frugivory do not entail damage for individual plants, notwith-
standing the fact that flowers and fruits are physically attached to
them. Like before, consider that flowers or fruits are ephemeral
compared with the lives of plants and animals. Thus F will rapidly
attain a steady-state ðdF=dt � 0Þ compared with the much slower
demographies. The number of flowers or fruits can be cast a
function of plant and animal abundances F � αN1=ðωþβoNoþβN2Þ,
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and the dynamical system (8) as

dN1

dt
¼ G1ð�Þþ

σoβoαNoþσ1βαN2

ωþβoNoþβN2

� �
N1

dN2

dt
¼ G2ð�Þþ

σ2βαN1

ωþβoNoþβN2

� �
N2 ð10Þ

where, not surprisingly, the equation for the animal is practically
the same as in the previous model where both species provide
resources to each other. The equation for the plant is, however, very
different, because its numerical response saturates with respect to
the abundance of its mutualistic partner, species 2. If No is taken as
the population abundance of another animal species, we can see
that model (10) can be generalized to account for many species, i.e.
the equation for plant 1 (and other plants) will be of the form:

dN1

dt
¼ G1ð�Þþ

α1
P

jσj1β1jNj

ω1þ
P

jβ1jNj

( )
Ni ð11Þ

where multiple benefits are to be pooled together as a saturating
multi-species numerical response using appropriate indices. The
equations for the animals will be like in model (5). Notice that the
plants do not experience competition for animal benefits, like
animals do for plant resources. In principle, plants would compete
very indirectly by influencing animal diets (e.g. βij, where iA
plants; jAanimals), but this would require more elaborate mechan-
isms (see Discussion).

Using (6) for Gi, it is straightforward to conclude that species
1 and 2 will respectively grow ðdNi=dt40Þ if

N1o
r1
c1

þ σoβoαNoσ1βαN2

c1ðωþβoNoþβN2Þ
ð12Þ

N14
ðc2N2�r2ÞðωþβoNoþβN2Þ

σ2βα
ð13Þ

and decrease if the signs of the inequalities are respectively reversed.
The nullclines are the same as above with “¼” signs instead. The
animal's nullcline is a parabola like in model (4) only that ω becomes
ωþβoNo. The plant's nullcline differs from the previous model, it is a
rectangular hyperbola, with a single root on the plant axis:

r1
c1

þ σoβoαNo

c1ðωþβoNoÞ
:

If this root is negative, the plant is an obligate mutualist of species
2 because its intrinsic growth rate is negative ðr1o0Þ, and other
means of pollination/seed dispersal (i.e. βoNo40) are insufficient to
compensate the losses. On the other hand if this root is positive, it
may still be that the plant's intrinsic growth rate is negative or zero,
yet pollination/seed dispersal not involving species 2 is enough to
sustain the plant's population. The maximum abundance that the
plant could attain thanks to species 2 is limited by the plant's
nullcline asymptote at N1 ¼ ðr1þσ1αÞ=c1. This means that if the
plant's intrinsic growth rate is negative, the rate of flower/fruit
production ðαÞ times the returns ðσ1Þ from the mutualism, must

r1/c1

r2/c2

r1/c1

r1/c1

N1

N2

N1

N2

N1

N2

N1

N2

Fig. 1. Nullclines in mutualisms with exchange of resources for resources (4), assuming linear self-limitation for each species. Species 1 (2) has the solid (dashed) nullcline.
Black and white circles represent stable (nodes) and unstable (saddle) equilibria respectively (also indicated by arrows nearby). A: When both species are facultative
mutualists, their nullclines always cross once giving rise to a single globally stable mutualistic equilibrium. When species 1 is facultative and species 2 is an obligate
mutualist their nullclines may cross as in B: once, giving rise to a single globally stable mutualistic equilibrium; or as in C: twice, giving rise to an unstable and a locally stable
mutualistic equilibrium. When both species are obligate mutualists, their nullclines may cross at two points (never a single one), an unstable and a locally stable mutualistic
equilibrium. The existence of an unstable mutualism means that the obligate species (species 2 in C, both species in D) may go extinct depending on the initial conditions or
external perturbations. With the exception of case A, the nullclines may also never cross, leading to the extinction of one or both species (not shown).
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overcome mortality ðασ14�r1Þ, otherwise the abundance of species
2 will not prevent the extinction of the plant. Fig. 2 shows the graphs
of the nullclines. The outcomes are qualitatively the same as in model
(4), as shown by Fig. 2. The numerical discrepancies between the
dynamics in the original model (8) and (9) and its steady-state
approximation (10) are shown and discussed in the Appendix.

The numerical response of the plant in (10) enables mechan-
istic interpretations for the saturation constants, rates and hand-
ling times, of species that rely on services rather than material
resources (e.g. food). Let us assume for the moment that the plant
relies exclusively on species 2 for pollination or dispersal serv-
ices (or No ¼ 0). Dividing the numerator and the denominator of
the numerical response by β, it can be written in the Michaelis–
Menten form:

vN2

KþN2
¼ αN2

ω

β

� �
þN2

ð14Þ

where the maximum rate at which a plant acquires benefits v¼ α
is set by the rate at which it can produce fruits or flowers, and the
half-saturation constant K ¼ ω=β is the ratio of the rate at which
flower or fruits are wasted rather than used by the animal, in other
words a quantifier of inefficiency. It turns out that in the jargon of
enzyme kinetics where the Michaelis–Menten formula is widely
used, the half-saturation constants is inverse of the affinity
between an enzyme and its substrate. If the analogy were that of
flower or fruits being substrates, and pollinators or frugivores
being enzymes (i.e. facilitators), then 1=K ¼ β=ω would be the
relative affinity of the animal for the flowers or fruits of the plant.
Now, if we decide instead to divide the numerator and the
denominator of the plant's numerical response by ω, it can be

written like Holling's disc equation:

aN2

1þahN2
¼

αβ

ω

� �
N2

1þ αβ

ω

� �
1
α

� �
N2

ð15Þ

where the rate at which the provider acquires benefits a¼ αβ=ω is
proportional to fruit or flower production α, and to the use to waste
ratio ðβ=ωÞ, e.g. the efficiency or affinity of the pollination or seed
dispersal process. The “handling time” of the plant becomes h¼ 1=α,
i.e. the average time it takes to create new flowers or fruits.

4. Discussion

By using a separation of time scales and the assumption of fast
resource dynamics, it is possible to derive simple models for
mutualistic interactions. In these models, the effect of one species
abundance on the growth rate of another, is mechanistically
grounded, rather than purely phenomenological. These numerical
responses display decrease due to intra-specific competition, or
because of diminishing returns in the acquisition of benefits,
enhancing the stability of the interaction. I avoid using the term
functional response because it refers to a consumption rate,
whereas a numerical response describes the effect of resource
density on consumer growth rates (Solomon, 1949; Holling, 1961).
While it is still correct to refer to functional responses with regard
to the consumption of resources provided by a mutualist (e.g. βiFj
in Eq. (2) is a type I functional response), the models derived (e.g.
Eq. (4)) describe the effect of population densities on growth rates,
not consumption rates. Thus, the term numerical response is more
appropriate in the present context.

r1/c1

r2/c2

r1/c1

r1/c1

N1

N2

N1

N2

N1

N2

N1

N2

(r1+ασ1)/c1 (r1+ασ1)/c1

(r1+ασ1)/c1 (r1+ασ1)/c1

Fig. 2. Nullclines (species 1: continuous line, species 2: dashed line) and equilibrium points in mutualisms with exchange of resources for services (10), with linear self-
limitation for each species (species 1 receives services from species 2 only, i.e. No ¼ 0). The explanations for A–D are the same as in Fig. 1.
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In both of the scenarios considered (resource-for-resource and
resource-for-service), intra-specific competition for mutualistic resources
emerges because resource production occurs at a finite rate per
individual provider, independently of its population size. If the popula-
tion of the provider is kept constant, this results in constant amounts of
resources provided per unit time, that will be partitioned among the
members of the other species, in their role as consumers. If the
consumer population is low, then each individual receives a constant
share, since the resource decay rate ismuch larger than the consumption
rate ðωicβjNjÞ. This is no longer true when consumer populations are
large, which is when competition causes every individual to get a share
that decreases with the number of co-specifics (Schoener, 1978).

In the case where only one species provides the resource, this
occurs in the form of an organ (e.g. flower and fruit) used by the
provider (e.g. plant) to capture a service (e.g. pollination and seed
dispersal) from the consumer (e.g. pollinator and frugivore). These
organs must be regularly replaced as they are used or decay, but, as in
the first scenario, this provision happens at a finite rate per individual
no matter how large is its population. If the population of the provider
is kept constant, and the population of the consumer is low, the rate at
which the provider acquires benefits per unit of consumer depends on
the production to decay ratio ðαi=ωiÞ, such that doubling the number
of consumers doubles the benefits for the plants. When the consumer
population is large, providers cannot regenerate the resource provid-
ing organs faster than the rate at which they are used. For this reason,
the more the provider helps the consumer to grow, the lower its
capacity to benefit from that increase, which explains the diminishing
returns. Keep in mind, however, that diminishing returns or saturating
responses are typically not enough to ensure stability; this requires
additional factors such as negative density dependence in growth
rates (6) or interference among consumers (Johnson and Amarasekare,
2013). In contrast with the resource-for-resource model, in the
resource-for-service model the resource provider (e.g. plant) does
not experience intra-specific competition for mutualistic services. One
step in this direction is the optimal foraging model of Valdovinos et al.
(2013), in which plants experience lottery-like competition for polli-
nator visits. This model explicitly accounts for nectar production and
consumption, using equations like (2), being just one step short of the
kind models here proposed.

I assumed that resource consumption follows simple mass action
laws. In reality, consumption likely displays saturating functional
responses (here the use of functional rather than numerical is correct).
In an interaction such as frugivory, saturation could follow the disc
equation mechanism (Holling, 1961), where the searching time of the
consumer decreases with the number of fruits, leading to an hyper-
bolic function of the number of fruits. In pollination, however, the
fraction of time during which a flower is not visited, i.e. the “flower
waiting time”, would decrease with the number of pollinators which
increase the “flower working time”. Thus in contrast with frugivory,
pollination must consider simultaneous saturation in plants and
animals, and the Beddington–DeAngelis function (Beddington, 1975;
DeAngelis et al., 1975) would be a reasonable choice describing flower
use. Replacing mass action laws with highly non-linear responses in
the resource dynamics will make it very difficult to derive simple
results as those presented. The absence of these complexities in the
present formulation does not, however, diminish the approach taken,
which stresses the importance of considering the ephemeral nature of
many kinds of resources shared in mutualistic interactions. The fact
that these resources must be continuously regenerated at rates that
are limited at the individual level, causes dynamical bottlenecks in the
acquisition of benefits that ought to be considered, independently of
the resource consumption patterns. Another complication not con-
sidered is that flowers and fruits are lost when plants die, but these
processes are supposed to be very slow.

The parameters in models such as (4) and (10) are very likely
related by trade-offs (Johnson and Amarasekare, 2013). It is reasonable

to assume e.g. that the energy or time used to deliver resources for
another species could be spent to raise the provider's intrinsic growth
rate in (6), thus ∂ri=∂αio0. Trade-offs could also affect the resource
quality, e.g. fruits or flowers can be cheaper to produce, but at the cost
of being very fragile or short-lived ð∂ωi=∂αi40Þ (Primack, 1985). From
the perspective of a consumer, assimilation ratios ðσiÞ can be inversely
related to consumption rates ðβiÞ. And for generalist consumers with
population dynamics described by (5), one typically assumes that
increasing the consumption rate for one resource causes the decrease
in the consumption rates of others. Although these trade-offs do not
change the general shape of the nullclines shown in Figs. 1 and 2, they
can lead to important changes in the qualitative properties of the
mutualism. For example, if the costs of providing benefits can go as far
as changing the sign of ri from positive to negative, a species could
turn from a facultative mutualist into an obligatory one.

Another kind of cost associated with mutualisms arises because
the interaction between the species also include antagonisms. These
costs are typically experienced at similar time scales as the popula-
tion dynamics (e.g. herbivory), thus they were not in the scope of this
paper. An example are leafcutter ants that provide substrates to
fungus, but they eat them too; or butterflies that pollinate when
adults, but are leaf eaters when larva (Revilla and Encinas-Viso,
2015). The costs of these interactions increase with the consumer's
abundance, which is why they are typically subtracted as saturating
functional responses in the provider's biomass dynamics (Holland
and DeAngelis, 2010). An important consequence of such density-
dependent costs are changes in nullcline shapes, from monotonically
increasing (i.e. Figs. 1 and 2), into more complex folding curves that
can intersect multiple times, giving rise to alternative states that
favor one species over another, depending on the initial conditions
(Hernandez, 1998; Holland and DeAngelis, 2009, 2010).

The use of time scale arguments is widespread in the ecological
literature. The derivation of the competitive Lotka–Volterra equations
by MacArthur (1970) is a well-known example. A lesser cited example
but the most relevant here are the competitive models derived by
Schoener (1978), which consider the partition of resource inflows (e.g.
Eq. (3)). Holling's (1961) disc equation assumes a predation cycle
embedded into a longer time scale of population dynamics. Fishman
and Hadany (2010) derived a Beddington–DeAngelis functional
response in the specific case of bee pollination, by considering details
such as flower and patch states, and flower–nest traveling times. And
for protection mutualisms Morales et al. (2008) employed time scale
arguments in order to simplify the study of ant protection mutualisms.

The scenarios suggested herein are far from exhaustive and the
mechanistic details can be higher. But on the other hand, the models
developed are of a general nature, they can encompass most plant–
frugivore mutualisms in addition to plant–pollinator ones, when the
resources are traded for services. They may not capture all the
intricacies of plant–mycorrhizae systems, or coral–zooxanthellae,
where organic compounds are traded directly and privately between
individuals, but they capture simple facilitation or mutual saprophyt-
ism of the kind described by Vadakattu and Paterson (2006), or in
lichens. One goal of this work is to see, to what extent, simple time
scale assumptions can help unify consumer-resource, mutualism and
competition theories. Another goal concerns the mechanistic deriva-
tion of generic models, with few complexities, but based on para-
meters that can be potentially measured such as rates of flowering or
nectar production and decay, and consumption rates.
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Appendix

From the main text the original model of exchanges of
resources for resources reads:

dNi

dt
¼ ðri�ciNiÞNiþσiβiFjNi

dFj
dt

¼ αjNj�ωjFj�βiFjNi ðA:1Þ

in which Gi ¼ ri�ciNi. Following the steady-state approximation
ðdFj=dt ¼ 0Þ this model becomes

dNi

dt
¼ ri�ciNiþ

σiβiαjNj

ωjþβiNi

� �
Ni

Fj ¼
αjNj

ωjþβiNi
ðA:2Þ

In Fig. A1 we compare the dynamics of both models (A.1) and
(A.2) numerically using 10 replicates. In these simulations the
growth rates ri and self-limitation coefficients ci were set at very
low values compared with resource production αi, decay ωi, and
consumption βi rates; in some cases the differences are more than
two orders of magnitude. This makes resource dynamics much
faster than population dynamics. Both models start with the same
initial values for the species population abundances.

From the main text the original model of exchanges of
resources for services can be stated as

dN1

dt
¼ ðr1�c1N1ÞN1þσ1βFNoþσ1βFN2

dN2

dt
¼ ðr2�c2N2ÞN2þσ2βFN2

dF
dt

¼ αN1�ωF�βFNo�βFN2 ðA:3Þ

in which Gi ¼ ri�ciNi and σo ¼ σ1; βo ¼ β for simplicity. Following
the steady-state approximation ðdFj=dt ¼ 0Þ this model becomes

dN1

dt
¼ r1�c1N1þ

σ1βαNoþσ1βαN2

ωþβNoþβN2

� �
N1

dN2

dt
¼ r2�c2N2þ

σ2βαN1

ωþβNoþβN2

� �
N2

F ¼ αN1

ωþβNoþβN2
ðA:4Þ

In Fig. A2 we compare the dynamics of both models (A.3) and
(A.4) numerically using 10 replicates. Most of the parameters are
similar to those used in the model of exchange of resources for
resources ðri; ci; α;ω; βÞ, in order to make the resource dynamics
much faster than population dynamics. However, whereas the
conversion efficiency of the resource consumer is less than 1 as
before, for the service receiver (species 1) it is larger than 1, for the
reasons stated in the main text.

For both models the simulations show discrepancies at starting
times because for equations like (A.1) and (A.3) the initial values of
Fj can be arbitrary, whereas in models like (A.2) and (A.4) they are
determined by the initial species abundances. After less than 10
time units, the transient dynamics are very similar in both models.
In fact, the differences between both models can be chosen to be
as little as desired, by widening the time scales between popula-
tion and resource dynamics.

Using again the resource for service model (A.3), one last
calculation illustrates the large difference between population
and resource time scales. When plants and animals do not interact,
they grow logistically as in dNi=dt ¼ ðri�ciNiÞNi. Thus, their dou-
bling times at low population densities, and perturbation half-
times around their carrying capacities, are τi ¼ log eð2Þ=ri. Using
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Fig. A1. Dynamics of the original mutualistic model (A.1) in the left column, and of the steady-state model (A.2) in the right column. For each simulation in the original
model a simulation in the steady-state model is done using the same initial conditions for species abundances. Blue (green) lines are for species i¼1 ð ¼ 2Þ; ri ¼ f0:007;0:01g,
ci ¼ f0:002;0:001g, σi ¼ f0:5;0:3g, αi ¼ f0:02;0:03g, ωi ¼ f0:2;0:1g, βi ¼ f0:1;0:15g. (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)
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the parameter values of Fig. A2, these are τ1 � 99 and τ2 � 69 time
units for plants and animals respectively. Now consider that they
start to interact, with N1;N2 are nearly constant around their
carrying capacities. During the very short time this constancy
holds, the fruit/flower ODE in (A.3) can be integrated as

FðtÞ ¼ αN1ð0Þ
ωþβN2ð0Þ

þ Fð0Þ� αN1ð0Þ
ωþβN2ð0Þ

� �
e� ωþβN2ð0Þð Þt ðA:5Þ

where N1ð0Þ ¼ r1=c1 ¼ 1:4;N2ð0Þ ¼ r2=c2 ¼ 10 and Fð0Þ are the
initial conditions ðt ¼ 0Þ. As time goes on, the resource asympto-
tically approaches the steady-state value αN1ð0Þ=ðωþβN2ð0ÞÞ, but
this could be a very long time. Instead, consider the time required
to halve the difference between the steady-state and the initial
condition (the square bracket), this can be calculated by setting:

e� ωþβN2ð0Þð Þt ¼ 1
2

and solving for t. The result is τF ¼ log eð2Þ=ðωþβN2ð0ÞÞ � 0:4 time
units, which is two orders of magnitude below τ1 and τ2. To put
this in perspective, by the time the resources are halfway from the
steady-state originally set by the producer and the consumer, they
would have grow or decrease less than 1%.
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