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 a b s t r a c t

The mutualism between plants and pollinators involves the exchange between plant resources and pollen disper-
sal services among con-specific plants. Since many pollinators are generalist foragers, the quality of pollination 
is compromised by inter-specific pollen transfer (IPT). This article proposes a mechanistic approach to model 
plant–pollinator interactions that considers the dynamics of pollen pick-up and its delivery to con-specific and 
hetero-specific targets, in parallel but separated from the consumption dynamics of plant rewards by the polli-
nators. This mechanism can model the interference effect caused by IPT on plant fitness, and predicts saturating 
effects on the quantity and efficiency of pollination. By coupling the mechanism with population dynamics, the 
resulting model demonstrates how plant–pollinator associations can shift between net mutualism and parasitism, 
depending on the ecological context and species traits.

1.  Introduction

Il avait déjà peur de s’être trompé de planète
Le Petit Prince, Chapitre XVII – Antoine de Saint-Exupéry

Pollination by animal vectors is an important ecological service. To-
gether with seed dispersal services, they support large plant–animal 
mutualistic communities upon which a multitude of terrestrial trophic 
networks depend. It is not surprising that pollination and seed disper-
sal have been subject to extensive research, empirically, experimentally 
and theoretically. This interest lead to the development of mathematical 
models of plant–pollinator interaction, where resources such as nectar, 
fruits or seeds are considered explicitly (Scheuring, 1992; Valdovinos 
et al., 2013; Encinas-Viso et al., 2014; Revilla, 2015) or implicitly (Hol-
land and DeAngelis, 2010). These developments help remedy, partially, 
an inconvenient feature of Lotka–Volterra models of mutualism, which 
predicts unbounded growth whenever the strength of mutualistic inter-
action overcomes the strength of self-regulatory forces that keep pop-
ulations in check (May, 1974; Vandermeer and Boucher, 1978; Moore 
et al., 2017).

In 2015, I suggested a mechanism for mutualism involving exchange 
of resources for mutualistic services, the kind of which occurs in the 
case of pollination or seed dispersal. In this mechanism plants provide 
energy rich resources such as nectar or fruits, and the consumption of 
these resources facilitates plant fertilization or seed dispersal, respec-
tively. This general approach, with peculiar variations, has already been 
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considered in several works (Scheuring, 1992; Valdovinos et al., 2013; 
Encinas-Viso et al., 2014; Revilla and Encinas-Viso, 2015). By assum-
ing that plant resources are ephemeral compared with time scales of 
plant and animal population dynamics, the mutualistic interaction is 
described exclusively in terms of population densities. An emergent re-
sult from this separation of time scales, is that plant benefits saturate 
with animal abundances. This is a common feature of modern mutual-
istic models (Holland et al., 2006; Holland and DeAngelis, 2010) which 
prevents unbounded growth (but see Moore et al., 2017 for an alterna-
tive solution). Another result of combining resource dynamics and time 
scales separation is that concepts such “asymptotic pollination rates” 
can be linked with e.g., nectar production rates, while plant “handling 
times” (of using pollinators) are given meaning in terms of expected nec-
tar (or flower) life times. In addition, the mechanism predicts pollinator 
self-regulation according to Schoener (1978) competition models based 
on energy partition. The resource-based approach in Revilla (2015) has 
been used to model a variety of ecological questions, such as competi-
tion between pollinators (Wang et al., 2018), spatial dynamics of plant–
pollinator interactions (Wang, 2019), assembly of plant–pollinator com-
munities (Becker et al., 2022), the effects of optimal foraging on plant 
coexistence (Revilla and Křivan, 2016, 2018, Revilla et al., 2021), and 
evolutionary diversification of pollination mutualisms (Marcou et al., 
2024).

In the 2015 article, I did not consider a distinctive feature of ani-
mal pollination. A pollinator visiting multiple plant species can trans-
fer pollen from e.g., plant species A to plant species B, leading to
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inter-specific pollen transfer (IPT).1 The direct consequence of this ac-
cident is loss of the plant’s male fitness component (wasted pollen), and 
potential loss of the female fitness component by stigma clogging, or ger-
mination of hetero-specific pollen (Waser, 1978, Murcia and Feinsinger, 
1996, Morales and Traveset, 2008, Ashman and Arceo-Gómez, 2013). 
The pollen loss effect has been considered by some models in a proba-
bilistic sense (e.g., Feldman et al., 2004, Benadi et al., 2012, Valdovinos 
et al., 2013), by assuming that pollination benefits correlate with the fre-
quency of pollinator visits to con-specific plants (Vázquez et al., 2005, 
Vázquez et al., 2012). However, this assumption has been challenged 
(King et al., 2013), and pollen sampling reveals that IPT is widespread 
and asymmetric, i.e., some plants species are net sources of pollen to 
other plants, and some are net sinks instead (Fang and Huang, 2013, 
Morales and Traveset, 2008). The study of how pollen gets transferred 
between plants (Inouye et al., 1994) can improve our understanding of 
plant–pollinator networks beyond the limitations of visitation analyses 
(de Manincor et al., 2020).

In this article I propose a new model of plant–pollinator interaction, 
one that separates the (a) dynamics of nectar production and consump-
tion from the (b) dynamics of pollen transfer, even though these two 
depend simultaneously on plant–pollinator visitation dynamics. A key 
difference between both types of dynamics is that pollen transfer in-
volves two steps, (i) pollen pick-up by the pollinators and (ii) its deliv-
ery back to the same or a different plant species. This is unlike nectar 
dynamics, which is not expected to return to a plant once consumed. 
Using separation of time scales, between rapid pollen and nectar dy-
namics against slow plant and animal dynamics, it is possible to derive 
dynamical equations that predict mutualistic as well as antagonistic in-
teractions between plants and pollinators. Some features of the 2015 
model are maintained, such as saturating benefits for plants and re-
source limitation for animals. But more important, this mechanism links 
a plant’s pollination efficiency with the reliability of pollen carriers, as 
well as traits from con-specific and hetero-specific targets. As a result, 
plant–pollinator interactions become context-dependent, spanning the 
mutualism–antagonism gradient in response to changes of the commu-
nities in which they are embedded.

2.  Nectar and pollen dynamics

Consider a community of 𝑛 plant and 𝑚 pollinator species. Let 𝑃𝑖
and 𝐴𝑗 be plant 𝑖 = 1,… , 𝑛 and pollinator 𝑗 = 1,… , 𝑚 population densi-
ties, respectively. Encounters, i.e., visitations, follow mass action laws 
as in 𝑉𝑖𝑗 = 𝑣𝑖𝑗𝑃𝑖𝐴𝑗 , where 𝑣𝑖𝑗 are species-specific visitation rates. Pollina-
tors visit plants to forage nectar, and plants could benefit from pollen 
dispersal services associated with these visits. Let 𝑁𝑖 and 𝐺𝑖 be respec-
tively, total amounts of liquid nectar and pollen grains available from 
[all members of] plant 𝑖. Let’s assume 𝑁𝑖 and 𝐺𝑖 are evenly spread across 
population 𝑖, i.e., individual plants hold 𝑁𝑖∕𝑃𝑖 and 𝐺𝑖∕𝑃𝑖 units (expected 
value). Nectar in flowers and pollen availability at anthers change with 
time 𝑡 as follows
𝑑𝑁𝑖
𝑑𝑡

= 𝑠𝑖𝑃𝑖 −𝑤𝑖𝑁𝑖 −
𝑚
∑

𝑗=1
𝑏𝑖𝑗𝑣𝑖𝑗𝐴𝑗𝑁𝑖, (1)

𝑑𝐺𝑖
𝑑𝑡

= 𝑝𝑖𝑃𝑖 − 𝑞𝑖𝐺𝑖 −
𝑚
∑

𝑗=1
𝑎𝑖𝑗𝑣𝑖𝑗𝐴𝑗𝐺𝑖, (2)

nectar is secreted by floral nectaries, at a rate 𝑠𝑖 per plant and lost at 
a rate 𝑤𝑖 (e.g., evaporation). Pollen is produced at a rate 𝑝𝑖 per plant 
in floral organs called anthers, and is lost at a rate 𝑞𝑖 (e.g., by wind 
or rain). Pollinators from species 𝑗 remove 𝑏𝑖𝑗𝑉𝑖𝑗 ×𝑁𝑖∕𝑃𝑖 = 𝑏𝑖𝑗𝑣𝑖𝑗𝐴𝑗𝑁𝑖
nectar units and 𝑎𝑖𝑗𝑉𝑖𝑗 × 𝐺𝑖∕𝑃𝑖 = 𝑎𝑖𝑗𝑣𝑖𝑗𝐴𝑗𝑁𝑖 pollen grains, where 𝑏𝑖𝑗 is a 
specific nectar consumption rate and 𝑎𝑖𝑗 a specific pollen attachment rate.

1 Some articles also use the term incorrect pollen transfer, or hetero-specific 
pollen transfer (HPT).

Nectar dynamics (1) is sufficient to describe the consumer–resource 
aspect of plant–pollinator interactions that reward pollinators (Valdovi-
nos et al., 2013, Revilla, 2015). Eq. (2) on the other hand, only accounts 
for the pollen retrieval phase of pollination. For plants to accrue pollina-
tion rewards, a subsequent pollen delivery phase has to take place, in 
which pollinators release pollen at con-specific flower stigmas. This sec-
ond phase is modeled using pollen loads or quotas 𝑄𝑖𝑗 , understood as 
total amount of pollen from plant 𝑖 being carried by [all members of] 
pollinator 𝑗 at a given time. Assume each individual pollinator carries 
𝑄𝑖𝑗∕𝐴𝑗 pollen grains (expected value). The dynamics of 𝑄𝑖𝑗 obeys
𝑑𝑄𝑖𝑗

𝑑𝑡
= 𝑎𝑖𝑗𝑣𝑖𝑗𝐺𝑖𝐴𝑗 − 𝑙𝑖𝑗𝑄𝑖𝑗 −

𝑛
∑

𝑘=1
𝑑𝑖𝑗𝑘𝑣𝑘𝑗𝑃𝑘𝑄𝑖𝑗 , (3)

pollen loads accumulate through corresponding collection rates 
𝑎𝑖𝑗𝑣𝑖𝑗𝐺𝑖𝐴𝑗 that appear subtracting in Eq. (2). Pollinators deliver 𝑑𝑖𝑗𝑘𝑉𝑘𝑗 ×
𝑄𝑖𝑗∕𝐴𝑗 = 𝑑𝑖𝑗𝑘𝑣𝑘𝑗𝑃𝑘𝑄𝑖𝑗 pollen grains to plants of species 𝑘, where 𝑑𝑖𝑗𝑘 is 
a delivery or detachment rate of pollen, specific with respect to pollen’s 
origin (plant i), carrier (pollinator j) and destination (plant k). Pollina-
tion only occurs when delivery is con-specific, i.e., 𝑘 = 𝑖. Hetero-specific 
deliveries, i.e., 𝑘 ≠ 𝑖, and leak rates 𝑙𝑖𝑗 (e.g., losses from grooming, fall-
out during flight), account for pollinator 𝑗 inefficiency from plant 𝑖’s 
standpoint.

For fixed 𝑃𝑖 and 𝐴𝑗 , Eqs. (1)–(3) form a system of linear ordinary 
differential equations. Appendix A shows that this system attains the 
following unique steady-state asymptotically

�̃�𝑖 =
𝑠𝑖𝑃𝑖

𝑤𝑖 +
∑𝑚

𝑗=1 𝑏𝑖𝑗𝑣𝑖𝑗𝐴𝑗
, (4)

�̃�𝑖 =
𝑝𝑖𝑃𝑖

𝑞𝑖 +
∑𝑚

𝑗=1 𝑎𝑖𝑗𝑣𝑖𝑗𝐴𝑗
, (5)

�̃�𝑖𝑗 =
𝑎𝑖𝑗𝑣𝑖𝑗�̃�𝑖𝐴𝑗

𝑙𝑖𝑗 +
∑𝑛

𝑘=1 𝑑𝑖𝑗𝑘𝑣𝑘𝑗𝑃𝑘
=

𝑎𝑖𝑗𝑝𝑖𝑣𝑖𝑗𝑃𝑖𝐴𝑗
(

𝑙𝑖𝑗 +
∑𝑛

𝑘=1 𝑑𝑖𝑗𝑘𝑣𝑘𝑗𝑃𝑘
)(

𝑞𝑖 +
∑𝑚

𝑗=1 𝑎𝑖𝑗𝑣𝑖𝑗𝐴𝑗
) ,

(6)

From this point, we can start to relate pollen and nectar dynam-
ics with the rewards received by plants and pollinators. Starting with 
the plants, it is reasonable to assume that reproduction scales with con-
specific pollen delivery (Waites and Ågren, 2004), i.e., the contribution 
of pollinator 𝑗 to plant 𝑖 seed production per capita is proportional to 
𝑑𝑖𝑗𝑖𝑣𝑖𝑗𝑄𝑖𝑗 (the 𝑘 = 𝑖 element of the sum in (3)). This amount of pollen 
is translated into seed numbers 𝑟𝑖𝑗𝑑𝑖𝑗𝑖𝑣𝑖𝑗𝑄𝑖𝑗 , by an appropriate fertiliza-
tion coefficient 𝑟𝑖𝑗 that depends on the pollen carrier (pollinators could 
influence pollen quality). Summing over con-specific deliveries from all 
pollinators, birth rates (i.e., total rate of seed production) per capita are 
defined as

𝐹𝑖 ∶=
𝑚
∑

𝑗=1
𝑟𝑖𝑗𝑑𝑖𝑗𝑖𝑣𝑖𝑗𝑄𝑖𝑗 . (7)

In the case of pollinators, nectar foraging rates per capita, 𝑏𝑖𝑗𝑣𝑖𝑗𝑁𝑖 in
(1), are translated into newborns by specific conversion efficiency param-
eters 𝑒𝑖𝑗 . Thus, pollinator birth rates per capita are defined as

𝑊𝑗 ∶=
𝑛
∑

𝑖=1
𝑒𝑖𝑗𝑏𝑖𝑗𝑣𝑖𝑗𝑁𝑖. (8)

Birth rates can be cast as functions of population densities, by sub-
stituting 𝑄𝑖𝑗 and 𝑁𝑖 with corresponding steady-states, �̃�𝑖𝑗 and �̃�𝑖. For 
plants, using (6) in (7) we get 

𝐹𝑖 =
𝑚
∑

𝑗=1
𝑝𝑖𝑟𝑖𝑗

(

𝑎𝑖𝑗𝑣𝑖𝑗𝐴𝑗

𝑞𝑖 +
∑𝑚

𝓁=1 𝑎𝑖𝓁𝑣𝑖𝓁𝐴𝓁

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑅𝑖𝑗

(

𝑑𝑖𝑗𝑖𝑣𝑖𝑗𝑃𝑖

𝑙𝑖𝑗 +
∑𝑛

𝑘=1 𝑑𝑖𝑗𝑘𝑣𝑘𝑗𝑃𝑘

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑇𝑖𝑗

, (9)

where 

𝑅𝑖𝑗 =
𝑎𝑖𝑗𝑣𝑖𝑗𝐴𝑗

𝑞𝑖 +
∑𝑚

𝓁=1 𝑎𝑖𝓁𝑣𝑖𝓁𝐴𝓁
, (10)

Journal of Theoretical Biology 606 (2025) 112096 

2 



Revilla

is the relative retrieval rate (i.e., fraction taken) of pollen from plant 𝑖 by 
pollinator 𝑗, and 

𝑇𝑖𝑗 =
𝑑𝑖𝑗𝑖𝑣𝑖𝑗𝑃𝑖

𝑙𝑖𝑗 +
∑𝑛

𝑘=1 𝑑𝑖𝑗𝑘𝑣𝑘𝑗𝑃𝑘
, (11)

is the transfer efficiency of plant 𝑖 pollen by pollinator 𝑗. 𝑅𝑖𝑗 and 𝑇𝑖𝑗 are in 
the [0, 1) range. Pollen retrieval, and thus birth rates (9), saturate with 
𝐴𝑗 . The transfer efficiency of pollinator 𝑗 saturates with con-specific 
plant density 𝑃𝑖, and decreases with hetero-specific density 𝑃𝑘≠𝑖.

For pollinators, using (4) in (8) we get 

𝑊𝑗 =
𝑛
∑

𝑖=1

𝑒𝑖𝑗𝑏𝑖𝑗𝑣𝑖𝑗𝑠𝑖𝑃𝑖

𝑤𝑖 +
∑𝑚

𝓁=1 𝑏𝑖𝓁𝑣𝑖𝓁𝐴𝓁
, (12)

where the 𝓁 in the denominator represents all consumers, including 
𝓁 = 𝑗. This result predicts that pollinator births scale linearly with plant 
densities and decrease monotonically with pollinator densities.

3.  Plant and pollinator dynamics

To link plant and pollinator dynamics with the dynamics of pollen 
and nectar, appropriate dynamical equations for plant and pollinator 
densities are needed; for instance, differential equations styled like 
𝑑𝑃𝑖∕𝑑𝑡 ∝ 𝐹𝑖𝑃𝑖 and 𝑑𝐴𝑗∕𝑑𝑡 ∝ 𝑊𝑗𝐴𝑗 , using (7) and (8), together with mor-
tality rates and density regulation terms. This would result in large cou-
pled systems with five sets of equations for: nectar, pollen, loads, plants 
and pollinators. While the study of such large systems is relevant (e.g., 
Valdovinos et al., 2013: nectar–plants–pollinators), there is another pro-
ductive alternative: we can assume that plant and pollinator demogra-
phy is much slower than the dynamics of production, loss and consump-
tion|transport, of nectar (1) and pollen (2), (3). Thus, 𝐹𝑖 and 𝑊𝑖 are 
replaced by their respective steady–state approximations (9) and (12). 
Changes of plant and pollinator populations can be modeled by

𝑑𝑃𝑖
𝑑𝑡

∶= 𝐹𝑖(𝐏,𝐀)
(

1 −
∑𝑛

𝑘=1 𝑐𝑖𝑘𝑃𝑘

𝐾𝑖

)

𝑃𝑖 − 𝑚𝑖𝑃𝑖 (13)

𝑑𝐴𝑗

𝑑𝑡
∶= 𝑊𝑗 (𝐏,𝐀)𝐴𝑗 − 𝑘𝑗𝐴𝑗 . (14)

𝐏 = [𝑃1,… , 𝑃𝑛],𝐀 = [𝐴1,… , 𝐴𝑚] serve to remind that per capita birth 
rates 𝐹𝑖 (9) and 𝑊𝑗 (12) now depend entirely on plant and pollina-
tor densities. Still, interaction dynamics is influenced by multiple traits 
behind production (𝑠𝑖, 𝑝𝑖), loss (𝑤𝑖, 𝑞𝑖, 𝑙𝑖𝑗 ) and transport (𝑎𝑖𝑗 , 𝑑𝑖𝑗𝑘, 𝑏𝑖𝑗 ) of 
pollen and nectar.

The 1 −∑

𝑘 𝑐𝑖𝑘𝑃𝑘∕𝐾𝑖 factor multiplying 𝐹𝑖 in (13) accounts for com-
petition of adult plants against recruitment, where 𝑐𝑖𝑘 is the effect of 
plant species 𝑘 on 𝑖 relative to the effect of 𝑖 on itself (thus 𝑐𝑖𝑖 = 1 by def-
inition), and 𝐾𝑖 is the plant’s carrying capacity. In (14) pollinator birth 
rates 𝑊𝑗 are regulated by competition for nectar, in the form proposed 
by Schoener (1978) for energy limited consumers. Plants and pollinators 
die out with mortality rates 𝑚𝑖 and 𝑘𝑗 per capita, respectively. Appendix 
B shows that the dynamics of system ((13), (14)) is bounded in the non-
negative part of the ℝ𝑛+𝑚 space.

Model ((13), (14)) is highly complex and involves many variables 
and parameters, see Table 1. In order to derive insights about the in-
fluence of pollen transport and nectar foraging upon plant–pollinator 
interactions, consider a small community with plant species 𝑖 =P and 
𝑘 =X and pollinator species 𝑗 =A and 𝓁 =Y. The dynamics of P and A 
are given by

𝑑𝑃
𝑑𝑡

=

⎧

⎪

⎨

⎪

⎩

𝑟𝑝

[

𝛿𝑣𝑃
𝑙+𝛿𝑣𝑃+𝑑𝑣𝑋

]

𝑎𝑣𝐴 +
[

𝑑𝑣𝑃
𝑙+𝑑𝑣𝑃+𝑑𝑣𝑋

]

𝑎𝑣𝑌

𝑞 + 𝑎𝑣𝐴 + 𝑎𝑣𝑌

(

1 − 𝑃 + 𝑐𝑋
𝐾

)

− 𝑚

⎫

⎪

⎬

⎪

⎭

𝑃

(15)

𝑑𝐴
𝑑𝑡

=
{

𝑒𝑠
(

𝛽𝑣𝑃
𝑤 + 𝛽𝑣𝐴 + 𝑏𝑣𝑌

+ 𝑏𝑣𝑋
𝑤 + 𝑏𝑣𝐴 + 𝑏𝑣𝑌

)

− 𝑘
}

𝐴, (16)

Table 1 
Model parameters, 𝑖 and 𝑘 denote plant species, 𝑗 denotes pollinator 
species. The right column displays values used for Eqs. (15) and (16).
 Symbol  Description  Value
𝑟𝑖𝑗  Fertilization coefficient (plants) 𝑟 = 0.5
𝐾𝑖  Plant’s carrying capacity 𝐾 = 100
𝑐𝑖𝑘  Plant inter-specific competition coefficient 𝑐 = 0.2 or 𝛾 ≥ 0
𝑒𝑖𝑗  Foraging conversion efficiency (pollinator) 𝑒 = 0.5
𝑚𝑖  Plant mortality rate 𝑚 = 0.05
𝑘𝑗  Pollinator mortality rate 𝑘 = 0.5
𝑝𝑖  Pollen production rate 𝑝 = 1
𝑞𝑖  Pollen decay rate (on flowers) 𝑞 = 1
𝑠𝑖  Nectar supply rate 𝑠 = 1
𝑙𝑖𝑗  Pollen loss rate (on animals) 𝑙 = 1
𝑤𝑖  Nectar decay rate flowers 𝑤 = 1
𝑣𝑖𝑗  Plant–animal visitation rate 𝑣 = 0.5
𝑎𝑖𝑗  Plant→Pollinator pollen attachment rate 𝑎 = 0.1
𝑑𝑖𝑗𝑘  Pollinator→Plant pollen detachment rate 𝑑 = 0.5 or 𝛿 ≥ 0
𝑏𝑖𝑗  Nectar consumption rate 𝑏 = 0.1 or 𝛽 ≥ 0
𝑋  Density of alternative plant partners 𝑋 ≥ 0
𝑌  Density of alternative pollinator partners 𝑌 ≥ 0

respectively. Pollen transport efficiencies (11) are indicated by square 
brackets. Pollen detachment rates are assumed uniform across plants 
and pollinators 𝑑PAX = 𝑑PYX = 𝑑PYP = 𝑑, except for con-specific delivery 
by pollinator A to plant P: 𝑑PAP = 𝛿. Similarly, nectar consumption rates 
are uniform across plants and pollinators 𝑏XA = 𝑏PY = 𝑏XY = 𝑏, except 
consumption of P’s nectar by A: 𝑏PA = 𝛽. Populations of X and Y are as-
sumed constant (no dynamics). Thus, 𝑋 and 𝑌  are parameters which 
determine the ecological context of the P–A interaction. The rest of the 
parameters are set uniformly (e.g., 𝑣𝑖𝑗 = 𝑣, 𝑎𝑖𝑗 = 𝑎,…), see Table 1. These 
assumptions facilitate description of the focal plant P–A interaction, by 
reference to interactions with non-focal, alternative plants and pollina-
tors, i.e., 𝑋 and 𝑌  values, the 𝛿 value relative to 𝑑, and that of 𝛽 relative 
to 𝑏, as follows:

1. If 𝛿 > 𝑑, pollinator A delivers P’s pollen con-specifically more fre-
quently that hetero-specifically, while pollinator Y delivers pollen 
P’s pollen con- and hetero-specifically with the same frequency. We 
can say then that, in terms of service quality, A is a better pollinator 
than Y for plant P. If 𝛿 < 𝑑 then Y is a better pollinator for P than A.

2. If 𝛽 > 𝑏, plant P is a better nectar source than plant X for pollinator 
A, and also A is a better than pollinator Y at exploiting P’s nectar. If 
𝛽 < 𝑏 on the other hand, plant X’s nectar is better than P’s, and also 
A and Y are equally good at exploiting X.

3. 𝑌  determines if the P–A interaction is obligate or facultative for 
plant P: a 𝑃 > 0 equilibrium with 𝐴 = 0 is (i) not feasible if 𝑌 < 𝑌 ∗

or (ii) feasible if 𝑌 > 𝑌 ∗. In the first case the interaction is obli-
gate, in the second facultative. The critical value, 𝑌 ∗ > 0, increases
with 𝑋.

4. 𝑋 determines if the P–A interaction is obligate or facultative for pol-
linator P: a 𝐴 > 0 equilibrium with 𝑃 = 0 is (i) not feasible if 𝑋 < 𝑋∗

or (ii) feasible if 𝑋 > 𝑋∗. In the first case the interaction is obli-
gate, in the second facultative. The critical value, 𝑋∗ > 0, increases
with 𝑌 .

The scenarios listed above can be combined, and the P–A dynamics can 
be studied by analyzing the stability around equilibrium states, where 
𝑑𝑃∕𝑑𝑡 = 𝑑𝐴∕𝑑𝑡 = 0 for 𝑃 ,𝐴 ≥ 0.

An equilibrium is locally asymptotically stable, if all eigenvalues 
of the jacobian matrix of the dynamical system have negative real 
parts (at that equilibrium). Stability for trivial (𝑃 = 𝐴 = 0), plant-only 
(𝑃 > 0, 𝐴 = 0) and pollinator-only (𝑃 = 0, 𝐴 > 0) equilibria are easy to 
derive by algebraic means, but not in the case coexistence equilibria 
(𝑃 > 0, 𝐴 > 0), which can be multiple and require numerical calcula-
tions. Thus, the dynamics was also studied by plotting plant and polli-
nator nullclines on the positive part of the 𝑃𝐴 plane, i.e., (𝑃 ,𝐴) points 
where 𝑑𝑃∕𝑑𝑡 = 0 and 𝑑𝐴∕𝑑𝑡 = 0, respectively, in system (15), (16).
P–A equilibria correspond to nullcline intersections, and dynamics can 
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Fig. 1. Examples of plant P and pollinator A dynamics, when being best mutualists for one another (𝛿 > 𝑑, 𝛽 > 𝑏) compared with alternatives (pollinator Y and plant 
X, respectively). Plant nullclines are solid curves, pollinator nullclines are dashed. A circle indicates equilibrium, black=stable, white=unstable. Trajectories (dots) 
follow the vector field (arrows). Parameters from Table 1 with 𝛿 = 0.7, 𝛽 = 0.3. The (𝑋, 𝑌 ) are (60, 30), (100, 30), (60, 60), (100, 100) in panels (a,b,c,d) respectively; 
these points are marked by “+” in Fig. 3(a).

be inferred from the direction field ([𝑑𝑃∕𝑑𝑡, 𝑑𝐴∕𝑑𝑡] vectors), as shown 
by Figs. 1 and 2. Be the reader aware about trivial nullclines, the 𝑃
axis (𝐴 = 0) for pollinators and the 𝐴 axis (𝑃 = 0) for plants. Their
intersections give origin to plant-only and pollinator-only equilibria, and 
the mutual extinct state (𝑃 ,𝐴) = (0, 0). For reasons of space, a lengthy 
account of equilibrium and stability conditions, as well as nullcline ge-
ometry, can be found in online Supplement file S1, sections 1.1 and 1.2. 
The nullclines, vector fields and numerical solutions depicted in Figs. 1 
and 2 where produced using MATLAB R.2024 (system (15), (16) was 
solved using the ode45 function). The effect of 𝑋 and 𝑌  variation on 
equilibria and their local stability (Fig. 3) was studied using XPPAUT
(Ermentrout, 2002).

Plant nullclines can take various shapes depending on parameter 
choices (see online Supplement file S1, section 1.2). Fig. 1 illustrates 
representative examples when P and A are best mutualistic partners 
for one another, compared with alternatives Y and X, respectively, i.e., 
𝛿 > 𝑑 and 𝛽 > 𝑏. Plant nullclines show as concave-up curves (e.g., like 
a “bowl”), with 𝑑𝑃∕𝑑𝑡 > 0 above (“inside the bowl”) it and 𝑑𝑃∕𝑑𝑡 < 0
below (“outside the bowl”). This means that increasing 𝐴 enlarges the 
region of the plane where 𝑃  increases, in other words the pollinator is 
good for the plant. The nullcline may intersect the 𝑃  axis, giving rise to a 
pair of plant-only equilibria, making the P–A interaction facultative for 
the plant. However, the lowest intersection is a minimum viable density 
in the absence of A: below this point P goes extinct, above this point P 
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Fig. 2. Examples of plant P and pollinator A dynamics, when being worst mutualists for one another (𝛿 < 𝑑, 𝛽 < 𝑏) compared with alternatives (pollinator Y and 
plant X, respectively). Plant nullclines are solid curves, pollinator nullclines are dashed. A circle indicates equilibrium, black=stable, white=unstable. Trajectories 
(dots) follow the vector field (arrows). Parameters from Table 1 with 𝛿 = 0.15, 𝛽 = 0.03. The (𝑋, 𝑌 ) are (50, 25), (60, 25), (50, 40), (88, 70) in panels (a,b,c,d) respectively; 
these points are marked by “+” in Fig. 3(b).
attains the highest intersection. If the nullcline does not intersect the 𝑃
axis then P goes extinct in the absence of A. Pollinator nullclines are in-
creasing curves provided 𝛽 > 0, with 𝑑𝐴∕𝑑𝑡 < 0 above it and 𝑑𝐴∕𝑑𝑡 > 0
below. This means that increasing 𝑃  enlarges the region where 𝐴 in-
creases. The nullcline may intersect the 𝐴 axis at a single point, giving 
rise to a single locally stable pollinator-only equilibrium. If the pollina-
tor nullcline does not intersect the 𝐴 axis, it goes extinct in the absence 
of P. The panels of Fig. 1 correspond to cases in which the interaction is: 
(a) facultative for both P and A, (b) obligate for P and facultative for A, 
(c) facultative for P and obligate for A, (d) or obligate for both P and A.

In all cases shown by Fig. 1, stable coexistence depends on the ini-
tial conditions. There is always a stable point where 𝑃 = 0, with 𝐴 > 0
(panels a,b) or 𝐴 = 0 (panels c,d). In other words, coexistence implies 
bi-stability: if initial 𝑃  is large enough then plant and pollinator attain 
stable coexistence, but if initial 𝑃  is too low the plant goes extinct (pan-
els a,b, interaction is facultative for A) or both plant and pollinator go 
extinct (panels c,d, interaction is obligate for A). Although not shown in 
this figure, bi-stability also happens when the P and A nullcline intersect 
only once. To see how, picture a situation like in panel (c) but A’s null-
cline intersects the 𝑃  axis in somewhere between the two intersections 
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0

Fig. 3. Parameter plane of alternative mutualist abundances. Coexistence between plant P and pollinator A occurs in the dark area: as a single locally stable 
equilibrium in the part above the dots; or at two equilibria, one locally stable and the other unstable (saddle point) in the part below the dots. P is viable (not viable) 
without A in the region above and left (below and right) of the solid curve. A is viable (not viable) without P in the region below and right (above and left) of the 
dashed line. Parameters from Table 1; with 𝛿 = 0.7 and 𝛽 = 0.3 for panel (a), or 𝛿 = 0.15 and 𝛽 = 0.03 for panel (b). The global dynamics at the crosses are shown by 
corresponding labels in Figs. 1 and 2.

of P’s nullcline on the same axis, the number of stable points is still two, 
one for coexistence and one for mutual extinction.

Now consider instead the case where Y is a better pollinator for plant 
P compared with A, i.e., 𝑑 > 𝛿, while X is a better nectar source for 
pollinator A compared with P, i.e., 𝑏 > 𝛽. In scenarios like this plant 
nullclines could be concave-up like in Fig. 1, but also concave-down 
as shown in Fig. 2 (e.g., like a “dome”, maximum not seen in panel 
c because the vertical scale is too short). The concave-down shape is 
favored when 𝑌  is small and P has to rely more on A for pollination. 
Concave-down nullclines intersect the 𝑃  axis twice. When the plant 
nullcline is like this, 𝑑𝑃∕𝑑𝑡 > 0 in the region between the nullcline and 
the 𝑃  axis, and 𝑑𝑃∕𝑑𝑡 > 0 outside. The fact that increasing 𝐴 narrows 
the width of the growth region, means that the net effect of A on P 
is antagonistic. In A’s absence, P attains a viable equilibrium (highest 
nullcline intersection with 𝑃  axis) provided initial densities are larger 
enough (above the lowest intersection between the nullcline and 𝑃
axis).

Fig. 2 shows potential nullcline configurations when the net effect of 
pollinator A on plant P is antagonistic. The P–A interaction is facultative 
for P in all the panels. In panels (a,b) the interaction is facultative for 
A because the density of its competitor, pollinator Y, is sufficiently low. 
By contrast in panels (c,d), Y’s density is large enough to make the P–A 
interaction obligate for A. This figure shows examples where the null-
clines intersect twice (a) or once (c), and in both cases we can see that 
coexistence implies bi-stability: there is a stable coexistence point and 
a second stable point where the plant is extinct. Finally, this figure also 
shows two interesting scenarios, without nullcline intersection, leading 
to the plant’s extinction. In the case of panel (a) the P–A interaction is 
facultative for P and for A, i.e., each can persist at stable densities in the 
absence of the other (provided minimum enough starting density for P), 
but the introduction of A causes the extinction of P. In the case of panel 
(b) the interaction is obligate for A, and its introduction ends up causing 
the extinction of both.

Changes in the ecological context in which the P–A interaction hap-
pens, i.e., density of alternative plant X or alternative pollinator Y, have 
consequences for mutualistic dependence and coexistence. This is illus-
trated in the 𝑋𝑌  parameter plane, Fig. 3:

• P–A interaction is facultative for P in the region above the j-shaped 
curve (solid) and obligate in the region below. This curve gives the 
critical 𝑌 ∗ value above of which plant-only equilibria are feasible.

• P–A interaction is facultative for A in the region below the straight 
line (dashes) and obligate in the region above. This line gives the 
critical 𝑋∗ value above (or right of) which a pollinator-only equilib-
rium is feasible.

• If initial 𝑃  is large enough (Allee effect), P–A coexistence is feasible 
in the dark region at
– a single stable equilibrium in the part above the dotted line (like 
in Fig. 2c), or

– two equilibria in the part below the dotted line, the equilibrium 
where 𝑃  and 𝐴 are higher is stable and the other equilibrium is 
unstable (like in Fig. 1a).

The coexistence regions in Fig. 3 are shown if (i) P and A are best 
mutualists for one another (panel a, where 𝛿 > 𝑑 and 𝛽 > 𝑏), or if (ii) 
Y is best for P and X is best for A (panel b, where 𝛿 < 𝑑 and 𝛽 < 𝑏). In 
the (i) first case coexistence spans well beyond regions where P or A are 
not viable when alone (below the solid line and above the dashed line), 
whereas in the (ii) second case coexistence is constrained close to the 
region where P and A are simultaneously viable when alone (above the 
solid line and below the dashed line).

There are many more patterns of nullcline intersections not shown 
in Figs. 1 and 2, e.g., cases of obligate–obligate mutualists in which 
nullclines don’t intersect, leading to global extinction. All possible qual-
itative patterns and their locations in the 𝑋𝑌  parameter plane are 
shown in the online Supplement file S1, section 2. These are done for
(i) 𝛿 > 𝑑, 𝛽 > 𝑏 and (ii) 𝛿 < 𝑑, 𝛽 < 𝑏, (iii) 𝛿 > 𝑑, 𝛽 < 𝑏 and (iv) 𝛿 < 𝑑, 𝛽 > 𝑏. 
All these indicate that coexistence between plant P and pollinator A is 
always conditional to plants starting with large enough initial densities 
(Allee effect).

4.  Discussion

Plant–pollinator interactions can be modeled by a mechanism that 
disentangles resource (i.e., nectar) dynamics (1) from pollen transport
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(2), (3). This new plant–pollinator model addresses the assumption that 
pollination services, which are hard to quantify, correlate with visitation 
rates (Vázquez et al., 2005, Vázquez et al., 2012), which are compara-
tively easier to account by observations and experiments. This assump-
tion is implicit in Revilla (2015) resource-for-service exchange model, 
which does not consider pollen dynamics. In that model plant benefits 
are proportional to consumption of plant resources. In the present ap-
proach pollen and nectar dynamics are separate affairs, though linked by 
pollinator visitation. Thus, nectar consumption can go in parallel with 
variable levels of pollination service, from very efficient to mediocre (or 
no service at all, e.g., nectar robbing).

By assuming that pollen and nectar dynamics is fast compared with 
plant and pollinator demographics, low level details about pollen trans-
fer and nectar consumption can be linked with dynamical Eqs. (13) 
and (14) to model plant–pollinator interactions at the population level. 
These equations are used predict plant–pollinator dynamics, which is 
done here graphically using the method of nullclines in simplified sce-
narios, e.g., system (15), (16). Note that in the Revilla (2015) pa-
per plant benefits combine additively with logistic regulation (like
e.g., Holland and DeAngelis 2010, Sauve et al. 2014), but here in this 
article the combination is multiplicative (like e.g., Benadi et al., 2012, 
Valdovinos et al., 2013, Revilla and Křivan, 2016). The multiplicative 
approach acknowledges that limiting factors implied by logistic regula-
tion, such as competition for space, nutrient or light, impose upper limits 
to population density that cannot be overcome by producing more seeds.

Resource consumption dynamics (1) leads to pollinator competition 
just as in Revilla (2015) paper. This is Schoener (1978) approach to 
model competition, where resources are split among consumers accord-
ing to specific consumption rates. The consumer fitnesses obtained with 
this approach can be used to derive, for instance, optimal foraging pref-
erences for plants (Revilla and Křivan, 2016, 2018, Revilla et al., 2021). 
On the other hand, pollen dynamics (2), (3) makes pollination efficiency 
dependent on plant densities, leading to Allee effects, as well as interfer-
ence by inter-specific pollen transfer (IPT). IPT allows plant–pollinator 
interactions to vary between net mutualism and net antagonistic ex-
ploitation of the plant by the pollinator, depending on the ecological 
context in which the interacting parts are embedded (i.e., availability of 
alternative interaction partners).

The interaction mechanism proposed in this paper implies that polli-
nation and foraging benefits depend on traits influencing pollen attach-
ment (𝑎𝑖𝑗 ) and detachment (𝑑𝑖𝑗𝑘) rates, pollen losses during transit (𝑙𝑖𝑗 )
and nectar consumption rates (𝑏𝑖𝑗 ). Some traits are relatively conspic-
uous (e.g., flower tube lengths, mouthpart sizes, Fontaine et al., 2005; 
seasonality, Olesen et al., 2011) and are frequently used to parameter-
ize interaction models (Encinas-Viso et al., 2012, Nuismer et al., 2013, 
Minoarivelo and Hui, 2015, Becker et al., 2022). Mechanistic models 
of the kind shown in this paper extend the dependencies to a micro-
scopic realm. For instance, pollination benefits could be made depen-
dent of physico-chemical properties of pollen grains and pollinator hairs 
(Stavert et al., 2016, Amador et al., 2017).

4.1.  Pollination benefits, Allee effects and interference

Pollen transfer involves two steps: (i) pick-up followed by (ii) de-
livery. The first step (i) predicts that plant pollination benefits saturate 
with the abundance of pollinator 𝑗 according to 𝑅𝑖𝑗 (10). The combined 
effect of all pollinators on plant’s 𝑖 birth rate (9) can be rewritten as 

𝐹𝑖 =

∑𝑚
𝑗=1 𝜌𝑖𝑗𝛼𝑖𝑗𝐴𝑗

1 + ℎ𝑖
∑𝑚

𝑗=1 𝛼𝑖𝑗𝐴𝑗
, (17)

where 𝜌𝑖𝑗 = 𝑟𝑖𝑗𝑇𝑖𝑗𝑝𝑖∕𝑞𝑖, 𝛼𝑖𝑗 = 𝑎𝑖𝑗𝑣𝑖𝑗 and ℎ𝑖 = 1∕𝑞𝑖. Eq. (17) resembles 
Holling’s type II multi-species functional response in which 𝛼𝑖𝑗 is an “attack 
rate” and ℎ𝑖 as a “handling time” that is proportional to the expected 
lifetime of pollen waiting to be picked.2 The reason for the saturation 

2 In a stricter sense what (17) actually models is the numerical response.

is that pollen production rate per capita (𝑝𝑖) and its expected life time 
(1∕𝑞𝑖) are finite and don’t scale with growing pollinator populations.

The second step (ii) of pollen transfer leads to variable transfer ef-
ficiencies 𝑇𝑖𝑗 (11), affecting the conversion of pollinator services into 
fertilization. In the case of con-specific delivery, transfer efficiency 𝑇𝑖𝑗
saturates with con-specific plant density. This causes Allee effects in rare 
plants. To see why consider Eq. (15) with 𝑋 = 𝑌 = 0. If 𝐴 is very large 
and 𝑃 ≪ 𝐾, the plant’s per capita rate of change is
𝑑𝑃
𝑃𝑑𝑡

≈
𝑟𝑝𝛿𝑣𝑃
𝑙 + 𝛿𝑣𝑃

− 𝑚, (18)

and is trivial to show that the derivative of the right-hand-side with 
respect to 𝑃  is positive at 𝑃 = 0. The reason for the Allee effect is 
that lower plant densities means low pollen production and insuffi-
cient con-specific targets. This is why plant–pollinator dynamics illus-
trated by Figs. 1 and 2 always include a stable point on the animal axis 
(𝑃 = 0, 𝐴 ≥ 0) corresponding to plant extinction, even if mutualism is 
facultative for the plants. It is important to remark that this Allee effect 
is different from the mutualistic Allee effect (Bronstein, 2015) that hap-
pens when plant and pollinator are obligate mutualists and both are at 
low densities.

In the case of hetero-specific delivery, pollination efficiency declines 
as the densities of competing delivery targets (other plants) increase. 
This enables indirect plant–plant antagonism through IPT. In the articles 
of Feldman et al. (2004), Benadi et al. (2012), Valdovinos et al. (2013) 
this effect is modeled with factors like

𝜇𝑖𝑗𝑃𝑖
∑𝑛

𝑘=1 𝜇𝑘𝑗𝑃𝑘
, (19)

which relate pollinator 𝑗 efficiency with the probability that the pollina-
tor caries plant’s 𝑖 pollen. Here 𝜇𝑖𝑗 is a parameter proportional to 𝑣𝑖𝑗 , and
(19) could be derived from a general case that considers pollen reten-
tion across multiple flower visits (Benadi et al., 2012). Unlike 𝑇𝑖𝑗 (11), 
the (19) formulation implies that the pollination efficiency for a mono-
culture (when 𝑃𝑘≠𝑖 = 0) is 1, regardless of its population size, i.e., there 
is no Allee effect caused by rarity of con-specific donors and targets.

4.2.  Net mutualism versus net parasitism

System (13), (14) demonstrates mutualistic dynamics. If the interac-
tion is facultative for plants and pollinators, mutualism allows higher 
equilibrium densities under coexistence in comparison with the situa-
tion where the population is alone. If the interaction is obligate for all, 
a plant is viable when pollinators exist with sufficient density, and vice-
versa. Graphical analysis with a simplified version of the model (15),
(16) indicates that plant–pollinator coexistence is always locally sta-
ble (Fig. 1). This is because plants experience the Allee effect discussed 
in the previous section, i.e., pollination efficiency increases with con-
specific plant density.

For given appropriate ecological contexts, system (13), (14) also 
predicts antagonism of pollinators towards plants, due to inefficiencies 
caused by IPT. This is illustrated by the simplified system (15), (16), 
when the alternative pollinator Y is better than the focal pollinator A 
for the focal plant P, because 𝛿 < 𝑑. What happens in this case is that P’s 
pollen is competitively taken by the worst (A) and the best (Y) pollina-
tors, and when the abundance of the worst pollinator increases relative 
to the best, a large fraction of pollen is wasted. In scenarios like these, 
the plant–pollination association is a net parasitism: pollinator A ex-
tract resource benefits while plant P pays the costs of pollen waste. It is 
interesting that under antagonism plant nullclines look like prey null-
clines of the Rosenzweig and MacArthur (1963) model with a maximum 
(Fig. 2). In spite of that similarity, the limited numerical analysis in this 
article has not discovered limit cycle dynamics of the kind expected in 
conventional prey–predator associations.

The antagonistic setting was enabled by manipulating differences in 
pollen delivery/detachment rates (𝑑𝑖𝑗𝑘), but similar outcomes could be 
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expected for differences in pollen loss rates (𝑙𝑖𝑗 ). The relevance of pollen 
losses by IPT was noted by Thomson (2003) in a colorful analogy (sic)

“To understand why, think of pollination as a process of 
transferring water by bucket from a supply reservoir (i.e., 
pollen from a focal plant’s anthers) to a receiving vessel 
(i.e., a set of stigmas). All pollinators are akin to leaky 
buckets; they vary with respect to the size of the bucket 
and the number of holes through which they leak. Imag-
ine that your job is to transfer as much water as possible 
into the receptacle. As you work away with your bucket, 
which leaks moderately, a friend comes by with a leakier 
bucket and offers to help. Do you want his help or not? If 
your supply reservoir is Lake Ontario, you should say yes; 
anything he transfers will be effectively added to what 
you transfer. However, if the supply vessel is, say, a bath-
tub that you will be able to empty in the time allotted, 
you should decline the assistance. He will spill water that 
you would have been able to transfer if you were working 
alone.”

The prediction of antagonism associated to low quality (e.g., “leaky”) 
pollinators has important implications for natural and managed ecosys-
tems (Morales and Traveset, 2008, 2009). Fig. 3 (see also parameter 
planes from supplementary file S1) imply that plant–pollinator coex-
istence in a local ecosystem can be altered in fundamental ways by 
changes in the abundances of alternative mutualists, which can be better 
or worse in their roles as resource providers or pollen carriers.

4.3.  Limitations and extensions of the current approach

The pollen transfer mechanism proposed in this article (Eqs. (2) and
(3)) treats pollen like uniform molecules following mass action laws, ig-
noring differences of form, size or accessibility (e.g., position in anthers 
or in pollinator bodies) that can be important for effective pollination. 
Although some of these details could be deal with using additional dif-
ferential equations, doing so would make very difficult to derive plant 
birth rates like (9) analytically, for use in population dynamic models 
like (13).

An important assumption made here, is that the dynamics of pollen 
load 𝑄𝑖𝑗 is coupled to pollen availability in flowers 𝐺𝑖,3 but the dynam-
ics of 𝐺𝑖 is not coupled to 𝑄𝑖𝑗 . In the model, pollen flows irreversibly 
from the 𝐺𝑖 compartment into 𝑄𝑖𝑗 compartments. In other words, 𝐺𝑖 is a 
source for the 𝑄𝑖𝑗 , which are sinks of the first. Also, there is no feedback 
that would slow down these flows. This ignores the finiteness of pol-
linator bodies, which are saturable by pollen, preventing further pick-
up. Thus, realistic attachment rates should be decreasing functions of 
loads (𝑎𝑖𝑗 = 𝑎𝑖𝑗 (𝑄𝑖𝑗 ), 𝑑𝑎𝑖𝑗∕𝑑𝑡 < 0). This would couple 𝐺𝑖 dynamics with 
𝑄𝑖𝑗 . That said, the position taken in this article is justified, if leak and 
delivery rates (𝑙𝑖𝑗 , 𝑑𝑖𝑗𝑘𝑣𝑘𝑗𝑃𝑘) are considered sufficiently high in compar-
ison to attachment rates, thus preventing or delaying flows from 𝑄𝑖𝑗
towards 𝐺𝑖, as well as pollinator saturation. This argument is frequently 
used in kinetic analyses (e.g., Briggs–Haldane mechanism for enzymatic 
reactions), in order to derive analytical results that are biologically in-
terpretable (e.g., saturation by pollinators (10) and transfer efficiencies
(11)).

The current approach considers only a fraction (yet important) of 
possible paths taken by pollen (e.g., see flowcharts in Inouye et al., 
1994). Some paths bring pollen back to the same plant or even the 
same flower, promoting selfing instead of outcrossing. Modeling these 
phenomena using simple kinetics like (2), (3) may prove difficult, or 
just impractical for developing tractable population dynamic models. 
On the other hand, the current approach could modified to model disty-
lous plants (Ganders, 1979): instead to considering several plant species, 

3 That which is exposed at the anthers, not the pollen already delivered.

we deal with a single structured population with two self-incompatible 
morphs, each of which produces viable seeds only with pollen from the 
other morph.

Pollen is also an important food for many pollinators. The approach 
followed by this article can be adapted to account for pollen consump-
tion. One way is to multiply each 𝑎𝑖𝑗𝑣𝑖𝑗𝐴𝑗𝐺𝑖 term in equation (3) by 
1 − 𝜋𝑖𝑗 , where 0 ≤ 𝜋𝑖𝑗 ≤ 1 is the fraction of acquired pollen that gets 
eaten. As a result, each element in the numerator of the plant birth rate 
(9) must be multiplied its corresponding 1 − 𝜋𝑖𝑗 fraction. On the pollina-
tor side, eaten pollen (∑𝑛

𝑖=1 𝜋𝑖𝑗𝑎𝑖𝑗𝑣𝑖𝑗𝐺𝑖) and eaten nectar (
∑𝑛

𝑖=1 𝑏𝑖𝑗𝑣𝑖𝑗𝑁𝑖)
must be combined to produce birth rates like (12), taking into account 
the appropriate nutritional complementarity between nectar and pollen 
(Blüthgen and Klein, 2011).

Finally, this article only considers the male side of plant fitness. For-
eign pollen can negatively affect the female side of fitness as well. One 
way to model effects on female fitness is to consider ovule dynamics, as 
in 𝑑𝑂𝑖∕𝑑𝑡 = 𝜎𝑖𝑃𝑖 − 𝜔𝑖𝑂𝑖 −

∑

𝑗 𝜙𝑖𝑗𝑂𝑖𝐴𝑗 −
∑

𝑗 𝜆𝑖𝑗𝑂𝑖𝐴𝑗 , where 𝑂𝑖 is the to-
tal number of unfertilized ovules from plant 𝑖, 𝜎𝑖 and 𝜔𝑖 are appropriate 
production and decay rates, 𝜙𝑖𝑗 is the fertilization rate by pollinator 𝑗
and 𝜆𝑖𝑗 the abortion rate caused by foreign pollen brought by the same 
pollinator. If seed production is proportional to fertilization ∑𝑗 𝜙𝑖𝑗𝑂𝑖𝐴𝑗 , 
the steady-state for the suggested dynamics predicts per capita benefits 
like 𝜎𝑖

∑

𝑗 𝜙𝑖𝑗𝐴𝑗
𝜔𝑖+

∑

𝑗 (𝜙𝑖𝑗+𝜆𝑖𝑗 )𝐴𝑗
. This results saturates with pollinator density like

(9), and predicts that plant growth is bounded from above by foreign 
pollen deposition, accounted by the 𝜆𝑖𝑗 . An important complication is 
that 𝜙𝑖𝑗 and 𝜆𝑖𝑗 may depend on population densities of con- and hetero-
specific pollen donors.
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Appendix A 

For given fixed 𝑃𝑖, 𝐴𝑗 ≥ 0, Eqs. (1) and (2) are of the form 𝑑𝑥∕𝑑𝑡 =
𝜆 − 𝜇𝑥(𝑡), which is separable. Solutions for initial value 𝑥(0) are 𝑥(𝑡) =
𝜆∕𝜇 − [𝜆∕𝜇 + 𝑥(0)]𝑒−𝜇𝑡 and lim𝑡→∞ 𝑥(𝑡) = 𝜆∕𝜇. Thus,

lim
𝑡→∞

𝑁𝑖(𝑡) = �̃�𝑖 =
𝜆𝑛
𝜇𝑛

=
𝑠𝑖𝑃𝑖

𝑤𝑖 +
∑𝑚

𝑗=1 𝑏𝑖𝑗𝑣𝑖𝑗𝐴𝑗
(A.1)

lim
𝑡→∞

𝐺𝑖(𝑡) = �̃�𝑖 =
𝜆𝑔
𝜇𝑔

=
𝑝𝑖𝑃𝑖

𝑞𝑖 +
∑𝑚

𝑗=1 𝑎𝑖𝑗𝑣𝑖𝑗𝐴𝑗
(A.2)

the limits are approached monotonically.
Next, Eq. (3) is of the form 𝑑𝑄𝑖𝑗∕𝑑𝑡 = 𝛾𝐺𝑖(𝑡) − 𝛿𝑄𝑖𝑗 (𝑡) where 𝛾 =

𝑎𝑖𝑗𝑣𝑖𝑗𝐴𝑗 and 𝛿 = 𝑙𝑖𝑗 +
∑𝑛

𝑘=1 𝑑𝑖𝑗𝑘𝑣𝑘𝑗𝑃𝑘. In view of (A.2) we can approxi-
mate 𝑑𝑄𝑖𝑗∕𝑑𝑡 ≈ 𝛾�̃�𝑖 − 𝛿𝑄𝑖𝑗 (𝑡) for large 𝑡, which is separable, and 𝑄𝑖𝑗 (𝑡) ≈
(𝛾�̃�𝑖 − 𝑘𝑒−𝛿𝑡)∕𝛿. Thus, 

lim
𝑡→∞

𝑄𝑖𝑗 (𝑡) = �̃�𝑖𝑗 =
𝛾�̃�𝑖
𝛿

=
𝑎𝑖𝑗𝑣𝑖𝑗𝑝𝑖𝑃𝑖𝐴𝑗

(𝑞𝑖 +
∑𝑚

𝑗=1 𝑎𝑖𝑗𝑣𝑖𝑗𝐴𝑗 )(𝑙𝑖𝑗 + 𝑙𝑖𝑗 +
∑𝑛

𝑘=1 𝑑𝑖𝑗𝑘𝑣𝑘𝑗𝑃𝑘)
.

(A.3)
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We conclude that 𝑁𝑖(𝑡), 𝐺𝑖(𝑡) and 𝑄𝑖𝑗 (𝑡) attain asymptotic steady states 
(4), (5) and (6), respectively. 

Appendix B 

Proposition: Solutions of (13), (14) are bounded in the non-negative 
ℝ𝑛+𝑚 space.

Proof : Since 𝑑𝑃𝑖∕𝑑𝑡|𝑃𝑖=0 = 𝑑𝐴𝑗∕𝑑𝑡|𝐴𝑗=0 = 0, solutions satisfy 
𝑃𝑖(𝑡), 𝐴𝑗 (𝑡) ≥ 0 for 𝑡 ≥ 0. From (9) we have 𝐹𝑖 <

∑

𝑗 𝑝𝑖𝑟𝑖𝑗 because 
0 ≤ 𝑅𝑖𝑗 , 𝑇𝑖𝑗 < 1 (10), (11). Thus,

𝑑𝑃𝑖
𝑑𝑡

=

{

𝐹𝑖

(

1 −
𝑃𝑖 +

∑𝑛
𝑘≠1 𝑐𝑖𝑘𝑃𝑘

𝐾𝑖

)

− 𝑚𝑖

}

𝑃𝑖

<

{ 𝑚
∑

𝑗=1
𝑝𝑖𝑟𝑖𝑗

(

1 −
𝑃𝑖
𝐾𝑖

)

− 𝑚𝑖

}

𝑃𝑖 (B.1)

(𝑐𝑖𝑖 = 1), which means that lim sup𝑡→∞ 𝑃𝑖(𝑡) < 𝐾𝑖

(

1 − 𝑚𝑖
𝑝𝑖
∑

𝑗 𝑟𝑖𝑗

)

. (i) If 
𝑝𝑖
∑

𝑗 𝑟𝑖𝑗 > 𝑚𝑖 then 𝑑𝑃𝑖∕𝑑𝑡|𝑃𝑖=𝐾𝑖
< 0; (ii) if 𝑝𝑖

∑

𝑗 𝑟𝑖𝑗 < 𝑚𝑖 then 𝑑𝑃𝑖∕𝑑𝑡 < 0. 
From both cases we conclude that 𝑃𝑖(𝑡) < 𝐾𝑖 for 𝑡 large.

Next, from (12) we have

𝑊𝑗 =
𝑛
∑

𝑖=1

𝑒𝑖𝑗𝑏𝑖𝑗𝑣𝑖𝑗𝑠𝑖𝑃𝑖

𝑤𝑖 + 𝑏𝑖𝑗𝑣𝑖𝑗𝐴𝑗 +
∑𝑚

𝓁≠1 𝑏𝑖𝓁𝑣𝑖𝓁𝐴𝓁
<

𝑛
∑

𝑖=1

𝑒𝑖𝑗𝑠𝑖𝑃𝑖

𝐴𝑗
,

furthermore, since 𝑃𝑖(𝑡) < 𝐾𝑖 for 𝑡 large, we have
𝑑𝐴𝑗

𝑑𝑡
= {𝑊𝑗 − 𝑘𝑗}𝐴𝑗 <

{ 𝑛
∑

𝑖=1

𝑒𝑖𝑗𝑠𝑖𝑃𝑖

𝐴𝑗
− 𝑘𝑗

}

𝐴𝑗 <
𝑛
∑

𝑖=1
𝑒𝑖𝑗𝑠𝑖𝐾𝑖 − 𝑘𝑗𝐴𝑗 , (B.2)

hence lim sup𝑡→∞ 𝐴𝑗 (𝑡) ≤
∑

𝑖 𝑒𝑖𝑗𝑠𝑖𝐾𝑖∕𝑘𝑗 and 𝑑𝐴𝑗∕𝑑𝑡|𝐴𝑗=
∑

𝑖 𝑒𝑖𝑗 𝑠𝑖𝐾𝑖∕𝑘𝑗 < 0. 
Thus, 𝐴𝑗 (𝑡) <

∑

𝑖 𝑒𝑖𝑗𝑠𝑖𝐾𝑖∕𝑘𝑗 for all 𝑡 large.
We can then conclude that for all 𝑡 large, solutions starting in the non-

negative ℝ𝑛+𝑚 space remain inside the 𝑛 + 𝑚 dimensional rectangular 
parallelepiped

[

0, 𝐾1
]

×⋯ ×
[

0, 𝐾𝑛
]

×
[

0,
∑

𝑖 𝑒𝑖1𝑠𝑖𝐾𝑖

𝑘1

]

×⋯ ×
[

0,
∑

𝑖 𝑒𝑖𝑚𝑠𝑖𝐾𝑖

𝑘𝑚

]

,

and system (13), (14) is bounded.

Supplementary material

Supplementary material associated with this article can be found in 
the online version at 10.1016/j.jtbi.2025.112096.
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